期刊文献+

Effect of Clay Minerals on Transport of Surfactants Dispersed Multiwalled Carbon Nanotubes in Porous Media

Effect of Clay Minerals on Transport of Surfactants Dispersed Multiwalled Carbon Nanotubes in Porous Media
下载PDF
导出
摘要 Clay minerals can hinder the transport of various contaminants in soil and aquifer, but how clay minerals affect the transport of nanoparticles in aquifers has not been investigated in depth. In this paper, the transport of surfactants dispersed multi-walled carbon nanotubes(MWCNTs) in welldefined quartz sand and mixtures of quartz sand and clay minerals(kaolinite and montmorillonite) with varying ionic strengths was studied. Sodium dodecyl benzenesulfonate(SDBS) and octyl-phenolethoxylate(TX100) MWCNT suspensions can migrate through quartz sand easily, but the presence of less than 2% w/w clay minerals in quartz sand can significantly hinder the transport of MWCNT suspensions, especially at high ion strength(0.6 m M CaCl2). The inhibition mechanism of clay minerals for surfactant-dispersed MWCNTs in porous media is the interception of MWCNTs. Kaolinite has stronger inhibition effect for MWCNTs transport than montmorillonite because more kaolinite can be retained in the quartz sand. Adsorption of surfactants by clay minerals does not affect the transport of MWCNTs significantly. This finding is important for the environmental assessment of MWCNT transport risks in soils and aquifers. Clay minerals can hinder the transport of various contaminants in soil and aquifer, but how clay minerals affect the transport of nanoparticles in aquifers has not been investigated in depth. In this paper, the transport of surfactants dispersed multi-walled carbon nanotubes(MWCNTs) in welldefined quartz sand and mixtures of quartz sand and clay minerals(kaolinite and montmorillonite) with varying ionic strengths was studied. Sodium dodecyl benzenesulfonate(SDBS) and octyl-phenolethoxylate(TX100) MWCNT suspensions can migrate through quartz sand easily, but the presence of less than 2% w/w clay minerals in quartz sand can significantly hinder the transport of MWCNT suspensions, especially at high ion strength(0.6 m M CaCl2). The inhibition mechanism of clay minerals for surfactant-dispersed MWCNTs in porous media is the interception of MWCNTs. Kaolinite has stronger inhibition effect for MWCNTs transport than montmorillonite because more kaolinite can be retained in the quartz sand. Adsorption of surfactants by clay minerals does not affect the transport of MWCNTs significantly. This finding is important for the environmental assessment of MWCNT transport risks in soils and aquifers.
出处 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第1期135-144,共10页 地质学报(英文版)
基金 supported by National Natural Science Foundation of China (41002088) Fundamental Research Project (SK201002,SK201502) of the Institute of Hydrogeology and Environmental Geology,Chinese Academy of Geological Sciences
关键词 Multi-walled carbon nanotubes clay mineral SURFACTANT colloid transport porous media Multi-walled carbon nanotubes clay mineral surfactant colloid transport porous media
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部