摘要
采用有限元模拟法,分析在热循环载荷条件下高密度倒装芯片封装微铜柱凸点的失效行为,并以微铜柱凸点的最大累积塑性应变能密度作为响应,采用3因素3水平的田口正交试验法分析倒装芯片封装的主要结构参数和材料属性对其热失效行为的影响.结果表明,距离封装中心最远处的微铜柱凸点是封装体中的关键微凸点,热疲劳导致的裂纹易在该微铜柱凸点的基板侧焊料外侧形成.底部填充胶的线膨胀系数对微铜柱凸点热失效的影响最大,影响适中的是底部填充胶的弹性模量,最弱的是芯片厚度.
The finite element method was used to study the failure behavior of the micro copper pillar bumps under the thermal cycle,and in order to simulate the influence of the main structure parameters and material properties on the cumulative plastic strain energy density,the Taguchi orthogonal experiment with three factors and three levels was designed by using the maximum cumulative plastic strain energy density of the micro copper pillar bumps as the response. The results showed that:micro copper pillar bumps corresponding to the most distant distance from the symmetrical center of the packaging was the key micro copper pillar bumps,and the crack were liable to form at the interface of solder and substrate for the key micro copper pillar bumps. The linear expansion coefficient of the underfill played the most important role but the chip thickness played the least important role in affecting the thermal failure of the micro copper pillar bumps.
出处
《焊接学报》
EI
CAS
CSCD
北大核心
2017年第1期35-38,共4页
Transactions of The China Welding Institution
基金
国家自然科学基金资助项目(U1504507)
河南省科技攻关资助项目(162102410018)
河南省高等学校重点科研项目计划(17H130004)
关键词
田口正交试验
微铜柱凸点
累积塑性应变能密度
热失效
Taguchi orthogonal experiment
micro copper pillar bump
accumulative inelastic strain energy density
thermal failure