期刊文献+

时序-神经网络模型在磨煤机一次风量测量中的应用 被引量:5

Application of the Time Sequence- Neural Network Model in Measurement of Primary Air Flow of Pulverizer
下载PDF
导出
摘要 针对制粉系统存在的大惯性和大迟延等特点,提出了一种基于时序-神经网络的一次风量软测量模型。在建模过程中,考虑了生产过程输入变量和输出变量的时序,给出了辅助变量选取和数据预处理方法。某电厂实际运行结果表明,该模型的准确性较目前广泛应用的静态神经网络软测量模型有显著提高。该研究为磨煤机一次风量的测量提供了一定的理论基础。 In accordance with the characteristics of large inertia and large time lag of the coal purverizing system, the model of soft measurement of primary air flow based on time sequence - neural network is proposed. In the modeling process, the time sequences of input variables and output variables of productive process are considered, the methods of secondary variables selection and data pretreatment are given. The simulation verification of model is conducted using the practical historical operation data of certain power plant,the results indicate that comparing with the commonly used static neural network soft measurement models; the precision of this model is obviously improved. The research provides certain theoretical basis for the measurement of primary air flow of pulverizers.
出处 《自动化仪表》 CAS 2017年第1期46-49,共4页 Process Automation Instrumentation
关键词 火电厂 制粉系统 磨煤机 风量 软测量 时间序列 BP神经网络 人工智能 归一化处理 数据挖掘 Thermal power plant Coal pulverizing system Pulverizer Air flow Soft measurement Time series BP neural network Artificial intellegence Normalized processing Data mining
  • 相关文献

参考文献11

二级参考文献118

共引文献308

同被引文献55

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部