期刊文献+

Mg-0.5Zn-0.4Zr-5Gd生物镁合金组织及耐蚀性 被引量:5

Microstructure and corrosion resistance of Mg-0.5Zn-0.4Zr-5Gd biomedical magnesium alloy
原文传递
导出
摘要 对铸态Mg-0.5Zn-0.4Zr-5Gd(质量分数,%)合金分别进行了固溶处理(T4)和固溶+时效处理(T6)。利用光学显微镜、X-射线衍射仪和透射电子显微镜研究了不同状态下合金的显微组织,采用静态腐蚀试验及电化学方法测试了不同状态合金在模拟体液中的耐蚀性,研究了固溶、固溶+时效处理对合金组织和耐蚀性的影响。结果表明,铸态Mg-0.5Zn-0.4Zr-5Gd合金的第二相主要为Mg3Gd和Mg5Gd相,合金经T4和T6处理后腐蚀速率降低,容抗弧半径增大,腐蚀电位Ecorr正移,腐蚀电流密度Icorr降低。其中合金经T6处理后其平均腐蚀速率为0.486 mm/year,腐蚀电位Ecorr较正,容抗弧半径较大,呈现出良好的耐蚀性。 As-cast Mg-0.5Zn-0.4Zr-5Gd magnesium alloy was heat-treated by T4 temper and T6 temper. Microstructure of the alloy under different conditions was studied by means of OM, XRD and TEM. The bio-corrosion resistance of the alloy under different conditions in simulated body fluid (SBF) was evaluated by mass loss experiment and electrochemical tests. Effects of T4 and T6 temper on the microstrueture and corrosion resistance of the Mg-0.5Zn-0. 4Zr-5Gd alloy were studied. The results show that the precipitated phases of the Mg-0.5Zn-0.4Zr-5Gd alloy are mainly Mg3 Gd and Mg5 Gd, corrosion rate of the as-cast alloy after the heat treatment decreases, radius of capacitive loop is improved, E shifts towards the negative potential and Icorr decreases after T4 and T6 treatment. For the aged alloy, corrosion rate is 0. 486 mm/year and corrosion potential is more positive and charge transfer resistance is larger. The biomedical magnesium alloy after T6 temper exhibits better corrosion resistance.
作者 刘亚 文九巴 单玉郎 雷少帆 姚怀 贺俊光 LIU Ya WEN Jiu-ba SHAN Yu-lang LEI Shao-fan YAO Huai HE Jun-guang(School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China Collaborative Innovation Center of Nonferrous Metals of Henan Province, Luoyang 471023, China)
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2017年第2期38-42,共5页 Transactions of Materials and Heat Treatment
基金 河南省"新型有色金属材料"高校科技创新团队支持计划(2012IRTSTHN008) 河南省教育厅重点项目(15A430024)
关键词 生物镁合金 第二相 耐蚀性 biomedical magnesium alloy precipitate eorrosiott resistance
  • 相关文献

参考文献11

二级参考文献69

  • 1白雪松,杜鹃,宋春梅.铝与人体健康的研究进展[J].吉林医药学院学报,2008,29(6):355-357. 被引量:54
  • 2唐伟,韩恩厚,徐永波,刘路.热处理对AZ80镁合金结构及性能的影响[J].金属学报,2005,41(11):1199-1206. 被引量:63
  • 3WITTE F, KAESE V, HAFERKAMP H, SWITZER E, MEYER-LINDENBERG A, WIRTH C J, WINDHAGEN H. In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials, 2005, 26: 3557-3563. 被引量:1
  • 4KANNAN M B, RAMAN R K. In vitro degradation and mechanical integrity of calcium-containing magnesium alloy inmodified-simulated body fluid[J]. Biomaterials, 2008, 29: 2306 2314. 被引量:1
  • 5WITTE F, KAESE V, HaAFERKAMP H, MEYER- L1NDENBERG A, WIRTH C J, WINDHAGEN H. In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials, 2005, 26: 3557-3563. 被引量:1
  • 6FEYERABEND F, FISCHER J, HOLTZ J, WITTE F, WILLEMEIT R, DRUCHER H, VOGT C, HORT N. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines[J]. Acta Biomaterialia, 2010, 6: 1834-1842. 被引量:1
  • 7LAMBOTTE A. Lutilization du magnesium comme materielperdu dans rosteosynthese[J]. Bull Mem Soc Nat Chir, 1932, 28:1325-1334. 被引量:1
  • 8YUEN C K, IP W Y. Theoretical risk assessment of magnesiumalloys as degradable biomedical implants[J]. Acta Biomaterialia,2010,6(5): 1808-1812. 被引量:1
  • 9WITTE F, HORT N, VOGT C, COHEN S, KAINER K U,WILLMEIT R, FEYERABEND. Degradable biomaterials basedon magnesium corrosion[J], Current Opinion in Solid State andMaterials Science, 2008,12(5/6): 63-72. 被引量:1
  • 10FEYERABEND F, FISCHER J, HOLTZ J, WITTE F,WILLUMEIT R, DRUCHER H, VOGT C, HORT N. Evaluationof short-term effects of rare earth and other elements used inmagnesium alloys on primary cells and cell lines[J]. Acta Biomaterialia,2010,6(5):18341842. 被引量:1

共引文献198

同被引文献47

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部