期刊文献+

钴修饰单壁碳纳米管的贮氢性能 被引量:3

Hydrogen adsorption of Co-decorated (5,5) single-walled carbon nanotube
下载PDF
导出
摘要 本文利用密度泛函理论中的广义梯度近似系统地研究了Co原子修饰的(5,5)单壁碳纳米管(SWCNT)的贮氢性能.结果表明:Co原子以桥位的形式吸附于(5,5)SWCNT表面能量最低,在Co原子周围可以吸附3个完整的氢分子,Co原子的修饰提高了(5,5)SWCNT对氢分子的吸附能力.态密度图显示(5,5)SWCNT具有金属性,磁矩为0,Co-SWCNT和Co-SWCNT·n H_2(n=1-3)的磁矩为1μB,氢分子的吸附未改变体系的磁性.Co-SWCNT·3H_2的氢分子平均吸附能为0.51 e V,适中的吸附能有利于常温常压下实现可逆贮氢. A comprehensive density functional theory (DFT) study of hydrogen molecules interaction with Co - decorated (5,5) single -walled carbon nanotube (SWCNT) was carried out. The most favorable position for Co adsorption on (5,5) SWCNT is the bridge site, and the Co atom can bind up to three HE molecules. Hydrogen adsorption energy in Co - decorated SWCNT is improved compared to that of pristine nanotube. The DOS curve shows that the (5,5) SWCNT is metallic and the magnetic moment obtained is zero, indicating an antiferromagnetic behavior. The Co - SWCNT and Co - SWCNT ·nH2 ( n = 1 - 3) systems have a magnetic moment of 1μB- The average binding energy of the n2 molecules in Co- SWCNT · 3H2 is 0. 51 eV, which would allow storage and discharge to be cycled under ambient conditions.
出处 《原子与分子物理学报》 CAS 北大核心 2017年第1期55-60,共6页 Journal of Atomic and Molecular Physics
基金 国家自然科学研究基金(11304410) 贵州省科技厅项目(黔科合J字LKZS[2012]03号 黔科合J字[2014]2170号) 贵州省重点学科-物理学(黔学位办[2013]18号) 贵州省联合基金项目(黔科合J字LKZS[2012]01号和黔科合LH字[2015]7025号)
关键词 单壁碳纳米管 储氢性能 过渡金属 SWCNT Hydrogen adsorption Transition metals
  • 相关文献

参考文献3

二级参考文献15

  • 1程锦荣,袁兴红.相互作用势对模拟计算单壁碳纳米管物理吸附储氢的影响[J].原子与分子物理学报,2005,22(2):289-298. 被引量:12
  • 2郑宏,王绍青,成会明.微孔对单壁纳米碳管储氢性能的影响[J].物理学报,2005,54(10):4852-4856. 被引量:15
  • 3Dillon A C, Jones K M, Bekkedahl T A, etal. Storage of hydrogen in single-walled carbon nanotbue [J]. Nature, 1997, 386:377. 被引量:1
  • 4Liu C, Fan Y Y, Liu M, etal. Hydrogen storage in single-walled carbon nanotubes at room temperature [J]. Science, 1999, 286:1127. 被引量:1
  • 5Cheng J R, Yuan X H, Zhao L, etal. GCMC simulation of hydrogen physisorption on carbon nanotubes and nanotube arrays [J]. Carbon, 2004, 42:2019. 被引量:1
  • 6Deng W Q, Xu X, Goddard W A. New alkali doped pillared carbon materials designed to achieve practical reversible hydrogen storage for transportation [J]. Phys. Rev. Lett. , 2004, 92.. 166103. 被引量:1
  • 7Cabria I, LopezMJ, Alonso J A. Enhancement of hydrogen physisorption on graphene and carbon nanotubes by Li doping [J]. J. Chem. Phys., 2005, 123:204721. 被引量:1
  • 8Wu X J, Gao Y, Zeng X C. Hydrogen storage in pillared Li-dispersed boron carbide nanotubes [J]. J. Phys. Chem. C, 2008, 112:8458. 被引量:1
  • 9Liu W, Zhao Y H, Li Y, etal. Enhanced hydrogen storage on Li-dispersed carbon nanotubes [J]. J. Phys. Chem. C, 2009, 113.. 2028. 被引量:1
  • 10Purewal J J, Keith J B, Ahn C C, etal. Adsorption and melting of hydrogen in potassium-intercalated graphite [J]. Phys. Rev. B, 2009, 79:054305. 被引量:1

共引文献12

同被引文献15

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部