摘要
对流、扩散是污染物在土介质中迁移的主要方式.假设水动力弥散系数为时间的指数函数,在建立了污染物在多孔介质中的一维对流扩散模型的基础上,通过同伦分析方法得到了模型的高度近似解.通过与Laplace变换法得到的解析解对比,结果表明,2者计算结果吻合良好,证明了同伦分析方法的正确性和有效性.该方法包含一个收敛控制辅助参数,有效控制和调节级数解析解的收敛性,通过选取适当的辅助参数,即可获得较大范围内收敛的级数解.因此,同伦分析方法是一种求解变系数迁移模型的有效方法.
Advection and dispersion are the significant processes of contaminant transport in the medium. Assuming that the hydrodynamic dispersion coefficient is the exponential function of time, the approximate solution with high accuracy is obtained by the homotopy analysis method (HAM) based on the development of one-dimensional solute transport model for contaminant in porous media. The results show that the numerical results agree well with the analytic solution obtained by Laplace transform technique previously, demonstrating the correctness and effectiveness of HAM. It contains the auxiliary parameter h to adjust and control the convergence region of series solution. The appropriate auxiliary parameter is selected to obtain a wide range of convergent series solution. Therefore, HAM is an effective method for the variable coefficient transport model.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2016年第A01期111-116,共6页
Journal of Southeast University:Natural Science Edition
基金
国家自然科学基金资助项目(41372264
51578427
51508418)
浙江省公益性技术应用研究计划资助项目(2014C33015
2015C33220)
关键词
污染物
变水动力弥散系数
污染物迁移模型
同伦分析方法
衰变
contaminant
variable hydrodynamic dispersion coefficient
advection-dispersion trans port model
homotopy analysis method
decay