期刊文献+

基于改进PSO的临空高速飞行器协同跟踪优化 被引量:4

Cooperative tracking optimization of near space high-speed vehicle based on improved particle swarm optimization
下载PDF
导出
摘要 临空高速飞行器具有飞行空域大、速度快等特点。针对临空高速飞行器协同跟踪面临分配资源要素众多、协同关系复杂等问题,在构建了面向临空高速飞行器的多传感器协同跟踪优化模型的基础上,通过改进粒子群优化算法的速度及位置更新方式,提出了结合置信算子及排斥算子的粒子群优化(confidence operator and repulsion operator particle swarm optimization,CORO-PSO)算法。仿真实验验证了所提算法能够满足临空高速飞行器协同跟踪对精确性及实时性的高要求,对临空高速飞行器探测跟踪系统的发展提供了一定的方法支撑。 The near space high-speed vehicle has the characteristics of large aerospace and high speed. As the allocation resources involve numerous factors and the cooperative relations are complex, multisensor cooperative tracking puts forward higher requirements for the optimization algorithm about tracking accuracy and realtime. Firstly, the multi-sensor cooperative tracking optimization model is proposed. Secondly, the confidence operator and repulsion operator particle swarm optimization (CORO-PSO) is proposed by introducing confidence and repulsion operators into the basic PSO. Finally, experimental results demonstrate this algorithm is reliable and can provide the method support for the development of cooperative tracking of the near space highspeed vehicle.
作者 范成礼 付强 邢清华 FAN Chengli FU Qiang XING Qinghua(School of Air And Missile Defense, Air Force Engineering University, Xi~ an 710051 , China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2017年第3期476-481,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61272011)资助课题
关键词 临空高速飞行器 多传感器协同 跟踪优化 改进粒子群优化算法 near space high-speed vehicle multi-sensor cooperative tracking optimization improved particle swarm optimization (PSO)
  • 相关文献

参考文献6

二级参考文献62

  • 1郭浩波,王颖龙,曾辉.采用遗传模拟退火算法研究导弹预警卫星传感器调度[J].电光与控制,2006,13(4):71-74. 被引量:19
  • 2王小艺,侯朝桢,原菊梅,郭飞,郝伟.防空火力分配建模及优化方法研究[J].控制与决策,2006,21(8):913-917. 被引量:24
  • 3胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 4Kennedy J, Eberhart R. Particle swarm optimization[C] . IntConf on Neural Networks. Perth: IEEE, 1995: 1942-1948. 被引量:1
  • 5Scriven I,Junwei L,Lewis A. Electromagnetic noisesource approximation for finite-difference time-domainmodeling using near-field scanning and particle swarmoptimization[J] .IEEE Trans on Electro-magneticCompatibility, 2010,52(1): 89-97. 被引量:1
  • 6Wei-Neng Chen, Jun Zhang, Chung H S-H. A novel set-based particle swarm optimization method for discreteoptimization problems[J] . IEEE Trans on EvolutionaryComputation, 2010, 14(2): 278-300. 被引量:1
  • 7Rong-Jong Wai, Jeng-Dao Lee. Real-time PID controlstrategy for maglev transportation system via article swarmoptimization[J] . IEEE Trans on Industrial Electronics,2010,58(2): 629-646. 被引量:1
  • 8Liang IJ,Qin A K,Suganthan P N,et al. Comprehensivelearning particle swarm optimizer for global optimizationof multimodal functions [J] . IEEE Trans on EvolutionaryComputation, 2006, 10(3): 281-295. 被引量:1
  • 9Changhe Li, Shengxiang Yang. An adaptive learningparticle swarm optimizer for function optimization[C] .IEEE Congress on Evolutionary Computation. Trondheim,2009: 381-388. 被引量:1
  • 10Mendes R,Kennedy J, Neves J. The fully informedparticle swarm: Simpler, maybe better[J] . IEEE Trans onEvolutionary Computation, 2004, 8(3): 204-210. 被引量:1

共引文献91

同被引文献21

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部