摘要
Fast Radio Bursts (FRBs) are intense radio flashes from the sky that are characterized by mil- lisecond durations and Jansky-level flux densities. We carried out a statistical analysis on FRBs that have been discovered. Their mean dispersion measure, after subtracting the contribution from the interstellar medium of our Galaxy, is found to be ~ 660 pc cm-3, supporting their being from a cosmological origin. Their energy released in the radio band spans about two orders of magnitude, with a mean value of ~ 10-39 erg. More interestingly, although the study of FRBs is still in a very early phase, the published collection of FRBs enables us to derive a useful intensity distribution function. For the 16 non-repeating FRBs detected by the Parkes telescope and the Green Bank Telescope, the intensity distribution can be described as dN/dFobs = (4.1± 1.3) × 103 F-obs1.1±0.2 sky-1 d-l, where Fobs is the observed radio obs fluence in units of Jy ms. Here the power-law index is significantly flatter than the expected value of 2.5 for standard candles distributed homogeneously in a flat Euclidean space. Based on this intensity distribution function, the Five-hundred-meter Aperture Spherical radio Telescope (FAST) is predicted to be able to detect about five FRBs for every 1000 h of observation time.
Fast Radio Bursts (FRBs) are intense radio flashes from the sky that are characterized by mil- lisecond durations and Jansky-level flux densities. We carried out a statistical analysis on FRBs that have been discovered. Their mean dispersion measure, after subtracting the contribution from the interstellar medium of our Galaxy, is found to be ~ 660 pc cm-3, supporting their being from a cosmological origin. Their energy released in the radio band spans about two orders of magnitude, with a mean value of ~ 10-39 erg. More interestingly, although the study of FRBs is still in a very early phase, the published collection of FRBs enables us to derive a useful intensity distribution function. For the 16 non-repeating FRBs detected by the Parkes telescope and the Green Bank Telescope, the intensity distribution can be described as dN/dFobs = (4.1± 1.3) × 103 F-obs1.1±0.2 sky-1 d-l, where Fobs is the observed radio obs fluence in units of Jy ms. Here the power-law index is significantly flatter than the expected value of 2.5 for standard candles distributed homogeneously in a flat Euclidean space. Based on this intensity distribution function, the Five-hundred-meter Aperture Spherical radio Telescope (FAST) is predicted to be able to detect about five FRBs for every 1000 h of observation time.
基金
supported by the National Basic Research Program of China(973 program,Grant Nos.2014CB845800 and 2012CB821802)
the National Natural Science Foundation of China(Grant Nos.11473012,U1431126 and 11263002)
the Strategic Priority Research Program(Grant Nos.XDB09010302 and XDB23000000)
the support from the CAS Interdisciplinary Innovation Team and the CAS Key International Collaboration Program