期刊文献+

基于冠层反射率模型的作物参数多阶段反演方法研究进展 被引量:4

Review on multi-stage inversion techniques of canopy reflectance models for retrieving crop variables
下载PDF
导出
摘要 利用遥感手段,基于冠层反射率(canopy reflectance,CR)模型反演农作物参数具有经济、高效、普适性好的特点,是智慧农业快速、精确监测区域尺度农情信息的理想方法。然而,CR模型反演过程受"病态反演"问题影响。针对此,前人提出了多阶段目标决策(multi-stage,sample-direction dependent,target-decisions,MSDT)法和面向对象(object-based)反演法。分别依据CR模型参数的敏感性和不确定性,以及作物参数的空间分布特征,将反演过程划分为若干阶段,每阶段只反演部分参数,前阶段反演结果作为后阶段反演的先验知识,以此减少CR模型参数优化的不确定性,改善"病态反演"问题。该文系统总结了MSDT法与面向对象反演法,将其归纳为统一的"多阶段反演"方法,并提出概念模型。基于此,总结、讨论了多阶段反演中如下三方面共性问题,试分析可能的解决途径:1)多阶段反演决策还需要广泛比较、科学论证与改进,以确保其合理性和有效性;未来研究中,应将MSDT法与面向对象反演方法有机结合,在统一的多阶段反演技术框架下,制定更加合理的反演决策方法。2)CR模型的参数化精度可能影响多阶段反演;未来应尝试利用"天空地一体化"遥感技术和尺度转换方法获取先验知识,提高CR模型参数化精度。3)多阶段反演过程中,反演误差逐级传递;未来研究中,一方面应尝试识别并纠正前阶段反演中的误差,另一方面应合理利用前阶段反演结果,避免前阶段反演误差影响后阶段的反演。 Remote sensing technique is known as an inexpensive and effective tool for retrieving crop variables in a large area. The existing methodologies can be identified into two categories: the methodologies based on statistical predictive models and the methodologies based on canopy reflectance(CR) models inversion. The latter is relatively universal. Thus, it has great potential in wisdom agriculture for crop monitoring in regional scale. However, CR model inversions suffer from the so-called "ill-posed problem". Therefore, the multi-stage, sample-direction dependent, target-decisions(MSDT) inversion technique and the object-based inversion technique were previously proposed. They are similar in technical routes: the progress of an inversion is partitioned into several stages. In each stage, only a part of variables were estimated. The results of preliminary stages are used as prior knowledge of later stages of inversion. In this way, the uncertainties in parameter optimization are reduced, the ill-posed problem is therefore limited. Concretely speaking, the MSDT method firstly estimates the sensitivity and uncertainties of variables before each stage of inversion. The most sensitive and uncertain variables were firstly retrieved using a subset of remote sensing data which is sensitive to the retrieved variables. The scheme of parameterization is then updated based on the preliminary results. Another subset of sensitive variables was subsequently retrieved using another subset of sensitive data. The object-based inversion defines an "object" as a plot or a gliding window, in which the crop has similar attributes. Such attributes are referred to as "object signatures". A remotely sensed image is firstly segmented into objects. Within each object, object signatures are firstly retrieved, and used as prior knowledge in subsequent pixel-wise retrieval of spatial heterogeneous or interested variables. In this way, spatial constrains, i.e., the spatial distribution of variables, are extracted and im
作者 刘轲 黄平 任国业 周清波 李源洪 王思 董秀春 Liu Ke Huang Ping Ren Guoye Zhou Qingbo Li Yuanhong Wang Si Dong Xiuchun(Institute of Remote Sensing Application, Sichuan Academy of Agricultural Science/Chengdu Branch of Remote Sensing Applieation Center, Ministry of Agriculture, Chengdu 610066, China Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Agri-informatics, Ministry of Agriculture, Beijing 100081, China)
出处 《农业工程学报》 EI CAS CSCD 北大核心 2017年第1期190-198,共9页 Transactions of the Chinese Society of Agricultural Engineering
基金 四川省财政创新能力提升工程青年基金(2015QNJJ-023) 四川省财政创新能力提升工程新兴学科专项(2013XXXK-024) 四川省财政创新能力工程高新领域扩展专项基金(2016GXTZ-011)
关键词 遥感 模型 作物 多阶段目标决策 面向对象 多阶段反演 作物参数 remote sensing models crops MSDT(multi-stage sample-direction dependent target-decisions) object-based multi-stage inversion crop variables
  • 相关文献

参考文献26

二级参考文献344

共引文献812

同被引文献19

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部