期刊文献+

基于多语言本体的中英跨语言信息检索模型及实现 被引量:18

A Study on Cross-Language Information Retrieval Model Based on Multilingual Ontology
原文传递
导出
摘要 [目的 /意义]构建一个基于多语言本体的跨语言信息检索模型,有助于用户通过该模型使用自己熟悉的语言来获取不同语种的信息资源。[方法 /过程]通过本体设计及检索模型功能模块设计建立一个基于数字出版领域本体的中英跨语言信息检索模型,并利用Java语言及Lucene搜索引擎架构对该模型进行编程实现。[结果/结论]多语言领域本体具有明确、形式化、共享、概念化、结构清晰等特征,可以作为语义层应用于跨语言信息检索系统之中,实现信息资源的语义表达。经测试,本文构建的模型能够较好地实现分词、查询扩展和语义关联等功能,促进跨语言信息检索向语义层次发展。 [ Purpose/significance] Constructing a cross-language information retrieval model based on muhilingual ontology is beneficial for users to acquire information resources in different languages by using their familiar language. [ Method/process ] This paper proposes a cross-language information retrieval model based on digital publishing domain ontology by the design of ontology and function module, and finally implements the retrieval model by Java and Lueene. [ Result/conclusionl Multilingual ontology is explicit, formalized, sharable, conceptualized and has clear structure, which can be used as a semantic layer in cross-language information retrieval system and bring about the semantic expres- sion of information resources. After testing, the model constructed in this paper can achieve some functions like word seg- mentation, query expansion and semantic association, promoting cross-language information retrieval to the semantic level.
出处 《图书情报工作》 CSSCI 北大核心 2017年第1期100-108,共9页 Library and Information Service
基金 教育部人文社会科学重点研究基地重大项目“基于内容的多语言信息组织与检索研究”(项目编号:14JJD870001)研究成果之一
关键词 跨语言信息检索 多语言本体 检索模型 cross-language information retrieval muhilingual ontology retrieval model
  • 相关文献

参考文献13

二级参考文献100

  • 1常青.世界图书出版西安公司是如何提升数字出版水平的[J].出版参考,2013(18). 被引量:1
  • 2刘群,张华平,俞鸿魁,程学旗.基于层叠隐马模型的汉语词法分析[J].计算机研究与发展,2004,41(8):1421-1429. 被引量:198
  • 3张俊林,曲为民,杜林,孙玉芳.跨语言信息检索研究进展[J].计算机科学,2004,31(7):16-19. 被引量:17
  • 4吴丹.本体在信息检索中的作用及实例研究[J].情报杂志,2006,25(6):72-75. 被引量:12
  • 5Davis M. New Experiments in Cross-language Text retrieval at NMSU's Computing Research Lab [M]. The Fifth Text Retrieval Conference.U.S. : Department of Commerce, National Institute of Standards and Technology, 1996:447-454. 被引量:1
  • 6Ruiz M, Diekema A, Sheridan P. CINDOR Conceptual Interlingua Document Retrieval [M]. The Eight Text Retrieval Conference.U.S. :Department of Commerce, National Institute of Standards and Technology, 199q : 597-606. 被引量:1
  • 7Ruiz M.Cvoss Language Infolanation Retrieval [EB/OL].http: //www.google.cn/search ?q=weka&complete= 1 &hl=zh-CN&- newwindow= 1 &client=aff-cs-gbown&hs=NJk, 2007-12-16. 被引量:1
  • 8Nie J Y. Towards a unified approach to CLIR and multilingual IR [J]. Workshop on Cross-language information retrieval: A research roadmap,2002, (8) :7-14. 被引量:1
  • 9Natalya F,Noy,Deborah L. Ontology Development 101: A Guide to Creating Your First Ontology[EB/OL]. http://protege.stanford.edu/publications/ontology_development/ontology101.pdf,2007-12-08. 被引量:1
  • 10Peter D, Karp, Gruber,et al. An ontology-based knowledge sharing API for AI people [M]. Proceeding of the international joint conference on aaificial intelligence.Montreal: Board of Trustees, 1995 : 1-25. 被引量:1

共引文献45

同被引文献293

引证文献18

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部