期刊文献+

后缘小翼智能旋翼减振效果影响因素分析 被引量:3

Influence factors analysis for smart vibration control of a rotor wing with trailing edge flaps
下载PDF
导出
摘要 建立了带后缘小翼智能旋翼气动弹性载荷计算模型及减振优化分析方法。模型考虑刚体后缘小翼的气动力与惯性力对弹性桨叶系统的影响,使用粘性涡粒子法结合翼型查表法计算旋翼气动载荷,采用力积分法计算桨叶与桨毂载荷,构造了包含桨叶根部扭转及桨毂振动载荷为目标函数的优化问题,基于最速下降-黄金分割组合优化算法寻找最佳小翼偏转规律。研究发现,建立的后缘小翼载荷控制方法有效,可降低振动目标函数70%。桨叶的弹性扭转使后缘小翼能有效实施减振,但弹性扭转对小翼气动力矩的放大作用使减振时通常伴随着桨叶扭转载荷增大的现象。 An aeroelastic load computation model and the optimization method of vibration control for a smart rotor wing with trailing edge flags were developed. The influences of aerodynamic forces and inertial forces of rigid body trailing edge flaps on its elastic blades system were considered. The viscous vortex particle method with the airfoil look-up table was used to compute the aerodynamic load of the rotor wing. The vibratory blade and hub loads were predicted with the force integration method. An optimal algorithm combining the steepest decent method and the golden section algorithm was derived for the defined objective function including the blade torsion and hub vibration loads. It was demonstrated that the proposed model can effectively control the vibratory loads, and the objective function can be reduced by about 7 0 % ; the torsion of elastic blades ensures the trailing edge flaps can effectively reduce vibration, while it amplifies the aerodynamic pitch moment of the trailing edge flaps, the latter brings additional blade torsional moment.
出处 《振动与冲击》 EI CSCD 北大核心 2017年第3期138-144,共7页 Journal of Vibration and Shock
基金 国家自然科学基金(11272148) 江苏高校优势学科建设工程 旋翼动力学国防科技重点实验室基金(9140C400401140C40183)
关键词 直升机 旋翼 振动 后缘小翼 优化方法 helicopter rotor wing vibration trailing edge flap optimization method
  • 相关文献

参考文献5

二级参考文献85

  • 1李春华,徐国华.悬停和前飞状态倾转旋翼机的旋翼自由尾迹计算方法[J].空气动力学学报,2005,23(2):152-156. 被引量:34
  • 2韩东,高正,王浩文,张虹秋.直升机桨叶刚柔耦合特性及计算方法分析[J].航空动力学报,2006,21(1):36-40. 被引量:3
  • 3杨卫东,马杰,张呈林.带粘弹减摆器旋翼系统气弹稳定性试验与阻尼识别[J].振动工程学报,2007,20(1):101-106. 被引量:8
  • 4Hall S R, Straub F K, Lau B H, et al. Active flap control of the SMART rotor for vibration reduction [C]//American Helicopter Society 65th Annual Forum. Grapevine: American Helicopter Society Intemetional, 2009 : 131-149. 被引量:1
  • 5Koratkar N A, Chopra I. Wind tunnel testing of a Mach-Scaled rotor model with trailing edge Flaps [C]//Proc 57th AHS Annual Forum. Alexandria: AHS, 2001 : 1069-1099. 被引量:1
  • 6Konstanzer P, Enenkl B, Cranga P, et al. Recent advances in Eurocopter's passive and active vibration control [C]//American Helicopter Society 64th Annual Forum. Canada :The American Helicopter Society. 2008:932-950. 被引量:1
  • 7Straub F, Kennedy D, Stemple A. et al. Development and whirl tower testing of the SMART active flap rotor [C]//Proc SPIE Symposium on Smart Structures and Materials. San Diego: Institute of Physics Publishing, 2004 : 282-293. 被引量:1
  • 8Straub F, Anand V, Domzalski D. Development of a piezoelectric actuator for trailing edge flap control of full scale rotor blades[J]. Smart Materials and Structures, 2001,10:25-34. 被引量:1
  • 9Leconte P, des Rochettes H M. Experimental assessment of an active flap device[C]//58th Annual Forum of the AHS. Montreal, Canada : AHS, 2002 : 1285-1296. 被引量:1
  • 10Dieterich O, Enenkl B, Roth D. Trailing edge flaps for active rotor control aeroelastic characteristics of the ADASYS rotor system [C]//American Helicopter Society 62rid Annual Forum. Phoenix, AZ: American Helicopter Society International, 2006: 1190-1212. 被引量:1

共引文献36

同被引文献26

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部