摘要
本文提出了一种组装单层聚苯乙烯(PS)胶粒晶体的方法。一定温度下,一定质量比乙醇和水(乙水比K)作为分散介质的悬浮液气-液界面处,可快速自组装出单层PS胶粒晶体。研究表明,悬浮液中的PS微球在对流的带动下到达气-液界面,在两个PS微球之间由弯液面产生的毛细管力推动下组装在一起,并形成组装核心。后续到达气-液界面的PS微球与组装核心持续组装,最终在悬浮液的气-液界面形成单层PS胶粒晶体。通过改变乙水比K,调整混合分散介质与到达气-液界面的PS微球之间的润湿性,进而改变组装推动力,最终实现单层PS晶体的组装。因此分散介质中的乙水比K是单层PS胶粒晶体形成的关键因素。PS微球的质量百分比浓度虽也可影响PS胶粒晶体薄膜的层数,但乙水比K<15∶1时,单纯降低浓度无法得到单层PS胶粒晶体。组装温度仅对晶体的质量产生影响。
A method for the preparation of polystyrene(PS) monolayer colloidal crystal(MCC) was presented in this paper. The sub-micrometer PS colloidal microspheres were self-assembled into MCC at the air-water interface of the emulsion using ethanol and water with certain mass ratio(K,Mass ratio of ethanol and water) as mixed dispersed medium under definite temperature. The results indicate that the PS colloidal microspheres protrude easily from the water surface as a result of water convection. The strong attractive capillary force generated from the meniscus between two PS colloidal microspheres at the air-water interface causes the PS colloidal particles to assemble into the ordered regions(nucleation).These ordered regions grow due to the convective transport of the particles to the ordered regions(aggregation),and the MCC was obtained successfully. The attractive capillary force was changed correspondingly while the wettability between the dispersion medium and the PS colloidal microspheres at the air-water interface was adjusted by the K,therefore the K is a key factor in the formation of the MCC.The layer number of the colloidal crystal were influenced by the mass percentage concentration of the PS microspheres,however the MCC can't be obtained by reducing the concentration merely under the K 15∶ 1. The ordered arrangement and the number of defects of the MCC were related with temperature.
出处
《人工晶体学报》
EI
CAS
CSCD
北大核心
2017年第1期105-111,共7页
Journal of Synthetic Crystals
基金
国家自然科学基金(51404097
61474038
U1404613)
河南省高校科技创新人才支持计划(17HASTIT029)
河南省高等学校重点科研项目(16A150009)
河南理工大学杰出青年基金(J2016-2)
关键词
单层PS胶粒晶体
气-液界面
自组装
润湿性
PS胶体微球
monolayer colloidal crystal(MCC)
air-water interface
self-assembly
wettability
PS colloidal microspheres