期刊文献+

一种新的改进辅助变量粒子滤波算法 被引量:3

A Novel Auxiliary Variable Particle Filter
下载PDF
导出
摘要 针对辅助变量粒子滤波(AVPF)对状态估计无法获得较好的滤波精度的问题,本文提出了一种改进的辅助变量粒子滤波算法.将正则化的思想引入到辅助变量粒子滤波的重采样中,在重采样中将离散的概率分布函数近似为连续的分布函数,该方法不仅保留了AVPF在重采样之前依据似然值的大小对原粒子集中的各个权值进行修正,从经过平滑后的后验密度中重采样的特点,在重采样中引入正则化思想后还能够保持粒子的多样性,增加有效样本数目,能够有效抑制样本退化.针对一个被广泛采用的双峰,高度非线性的系统模型,在选取不同的过程噪声下,进行Monte Carlo仿真实验.仿真实验表明,改进的辅助变量粒子滤波具有更好滤波精度. Auxiliary variable particle filter (AVPF) at smaller process noise, state estimation can not get better filtering accuracy, this paper presents a novel auxiliary variable particle filter. Regularization will be introduced into resampling of auxiliary variable particle filter, In the resampling, the discrete probability distribution function approximated by a continuous distribution function, which not only retains the feature that AVPF based on the size of likelihood values revises the original particles are concentrated weights before resampling , from smooth posterior density resarnpling, after the introduction of regularization also able to maintain the diversity of particle in the resampling, increasing the number of the effective particles, can effectively inhibit the degradation of the sample For doublet, a highly nonlinear system model has been widely used , in the process of selecting a different noise, carry out Monte Carlo simulations. Simulation results show that the novel variable particle filter has better filtering accuracy.
出处 《微电子学与计算机》 CSCD 北大核心 2017年第2期39-42,共4页 Microelectronics & Computer
关键词 辅助变量粒子滤波 正则化 概率分布函数 auxiliary variable particle filter regularization probability distribution function
  • 相关文献

参考文献4

二级参考文献33

  • 1杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267. 被引量:74
  • 2Bar-Shalom Y, Li X R, and Kirubarajan T. Estimation with Applications to Tracking and Navigation: Theory, Algorithms, and Software [M]. New York: John Wiley & Sons, 2001:373-374, 381-395, 99, 268-275. 被引量:1
  • 3Kushner H J. Approximations to optimal nonlinear filters . [J]. IEEE Trans. on Automat. Contr., 1967, 12(10): 546- 556. 被引量:1
  • 4Kay S M. Fundamentals of Statistical Signal Processing: Estimation Theory [M]. N J: Prentice Hall, 1993:449-452, 344-350. 被引量:1
  • 5Mathematical Society of Japan. Encyclopedic Dictionary of Mathematics (2^nd ed.) [M]. Cambridge, Massachusetts, and London: The MIT Press, 1986: 1754, 1449. 被引量:1
  • 6Doucet A, Godsill S, and Andrieu C. On sequential Monte Carlo methods for Bayesian filtering [J]. Statistics and Computing, 2000, 10(3): 197-208. 被引量:1
  • 7Arulampalam M S, Maskell S, and Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Trans. on Signal Processing, 2002, 50 (2): 174-188. 被引量:1
  • 8Pitt M and Shephard N. Filtering via simulation: Auxiliary particle filters [J]. J. Amer. Statist. Assoc., 1999, 94(446): 590-599. 被引量:1
  • 9Gordon N J, Salmond D J, and Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [J]. IEE Proc.-F, 1993, 140 (2): 107-113. 被引量:1
  • 10Carpenter J, Clifford P, and Fearnhead P. Improved particle filter for nonlinear problems [J]. IEE Proc. Radar, Sonar and Navigation, 1999, 146(1): 2-7. 被引量:1

共引文献157

同被引文献16

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部