期刊文献+

RLS3, a protein with AAA+ domain localized in chloroplast, sustains leaf longevity in rice 被引量:6

RLS3, a protein with AAA+ domain localized in chloroplast, sustains leaf longevity in rice
原文传递
导出
摘要 Leaf senescence plays an important role in crop developmental processes that dramatically affect crop yield and grain quality. The genetic regulation of leaf senescence is complex, involving many metabolic and signaling pathways. Here, we identified a rapid leaf senescence 3 (rls3) mutant that displayed accelerated leaf senescence, shorter plant height and panicle length, and lower seed set rate than the wild type. Map-based cloning revealed that RLS3 encodes a protein with AAA+ domain, localizing it to chloroplasts. Sequence analysis found that the rls3 8ene had a single-nucleotide substitution (G--~A) at the splice site of the Ioth intron/11th exon, resulting in the cleavage of the first nucleotide in 11th exon and premature termination of P, LS3 protein translation. Using transmission electron microscope, the chloroplasts of the rls3 mutant were observed to degrade much faster than those of the wild type. The investigation of the leaf senescence process under dark incubation conditions further revealed that the rls3 mutant displayed rapid leaf senescence. Thus, the RLS3 gene plays key roles in sustaining the normal growth of rice, while loss of function in RLS3 leads to rapid leaf senescence. The identification of RLS3 will be helpful to elucidate the mechanisms involved in leaf senescence in rice. Leaf senescence plays an important role in crop developmental processes that dramatically affect crop yield and grain quality. The genetic regulation of leaf senescence is complex, involving many metabolic and signaling pathways. Here, we identified a rapid leaf senescence 3 (rls3) mutant that displayed accelerated leaf senescence, shorter plant height and panicle length, and lower seed set rate than the wild type. Map-based cloning revealed that RLS3 encodes a protein with AAA+ domain, localizing it to chloroplasts. Sequence analysis found that the rls3 8ene had a single-nucleotide substitution (G--~A) at the splice site of the Ioth intron/11th exon, resulting in the cleavage of the first nucleotide in 11th exon and premature termination of P, LS3 protein translation. Using transmission electron microscope, the chloroplasts of the rls3 mutant were observed to degrade much faster than those of the wild type. The investigation of the leaf senescence process under dark incubation conditions further revealed that the rls3 mutant displayed rapid leaf senescence. Thus, the RLS3 gene plays key roles in sustaining the normal growth of rice, while loss of function in RLS3 leads to rapid leaf senescence. The identification of RLS3 will be helpful to elucidate the mechanisms involved in leaf senescence in rice.
出处 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2016年第12期971-982,共12页 植物学报(英文版)
关键词 AAA+ domain rapid leaf senescence RICE RLS3 AAA+ domain rapid leaf senescence rice RLS3
  • 相关文献

参考文献1

二级参考文献6

共引文献47

同被引文献68

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部