期刊文献+

基于复杂区域多层嵌入的三维模型隐写 被引量:3

Structure complexity based multi-layer steganography for 3D model
下载PDF
导出
摘要 本文以三维模型为隐写载体,提出一种基于结构复杂度的多层隐写方法。通过分析三维模型中各区域的结构复杂度,提取复杂度较高特征区域的顶点用于承载秘密数据。在这些顶点中,采用多层嵌入的隐写方法进行嵌入,只需修改模型中的少量数据就可实现高容量数据嵌入。该方法还可有效对抗面向三维模型的隐写分析方法,实验表明本文方法产生的含密三维模型很好地保持了二面角及面法向量的统计特性,使用基于一阶拉普拉斯平滑与特征统计的隐写分析方法难以进行隐写检测。 This paper proposes a steganography method for 3D model,using structure complexity based multi-layer embedding.By analyzing the structure of the original model,we extract the vertexes in the regions with high complexities.With these vertexes,multi-layer based embedding is used to hide secret message,in which high capacity can be achieved by small modifications.The proposed method also has the capability of defeating steganography 3D model steganalysis.Experimental results show that stego 3D model preserves the statistical features like the dihedral angle degrees and the face normal vectors.As a result,the Laplace smoothing and feature statistics based steganalysis is difficult to reveal the fact of data hiding.
作者 杨飚 吕梦琪 王宜敏 钱振兴 Yang Biao Lv Mengqi Wang Yiming Qian Zhenxing(Shanghai University, School of Communication and Information Engineering, Shanghai 201900, China)
出处 《电子测量技术》 2016年第12期164-167,175,共5页 Electronic Measurement Technology
基金 国家自然科学基金(U1536108 61402279 61572308) 上海自然科学基金(14ZR1415900)资助项目
关键词 信息隐藏 隐写 隐写分析 三维模型 information hiding steganography steganalysis 3D Model
  • 相关文献

参考文献3

二级参考文献36

  • 1BESL P J,MCKAY N D. A method for registration of 3-D shapes[ J ]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1992,14 ( 2 ) : 239-256. 被引量:1
  • 2PING Y, BOWYER K W. Ear biometrics using 2D and 3D images [ C ]. Computer Vision and Pattern Recognition- Workshops,2005. CVPR Workshops. IEEE Computer So- ciety Conference on,2005 : 121-128. 被引量:1
  • 3CHEN H,BHANU B, WANG R. Performance evaluation and prediction for 3D ear recognition[ M]. KANADE T,JAIN A, RATHA N. Audio-and Video-Based Biometric Person Au- thentication. Springer Berlin Heidelberg ,2005:748-757. 被引量:1
  • 4YAN P, BOWYER K W. Empirical evaluation of advanced ear biometrics [ C ]. Computer Vision and Pattern Recogni- tion-Workshops,2005, CVPR Workshops. 1EEE Computer Society Conference on,2005:41-41. 被引量:1
  • 5YAN P,BOWYER K W. An automatic 3D ear recognition system[ C ]. Proc. Third Int' 1 Syrup. 3D Data Processing, Visualization, and Transmission ,2006:213-218. 被引量:1
  • 6CHEN H, BHANU B. 3D free-form object recognition in range images using local surface patches [ J ]. Pattern Rec- ognition Letters ,2007,28 ( 10 ) : 1252-1262. 被引量:1
  • 7HUI C, BHANU B. Human ear recognition in 3 D [ J ]. Pat- tern Analysis and Machine Intelligence, IEEE Transac- tions on,2007,29(4) :718-737. 被引量:1
  • 8ttUI C, BI-IANU B. E[ficient recognition of high~ty similar 3D objects in range images[ J]. Pattern Analysis and Ma- chine Intelligence, IEEE Transactions on, 2009,31 ( 1 ) : 172-179. 被引量:1
  • 9WANG K,MU Z, HE Z. An efficient approach of 3D ear recognition[ C]. lOth World Congress on Intelligent Con- trol and Automation, WCICA 2012, China: Institute of E- lectrical and Electronics Engineers Inc. , 2012 : 4784-4790. 被引量:1
  • 10IALAM S, DAVIES R, BENNAMOUN M, et al. Efficient detection and recognition of 3D ears [ J ]. International Journal of Computer Vision,2011,95 (l) :52-73. 被引量:1

共引文献22

同被引文献11

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部