期刊文献+

A PRIMAL-DUAL FIXED POINT ALGORITHM FOR MULTI-BLOCK CONVEX MINIMIZATION 被引量:1

A PRIMAL-DUAL FIXED POINT ALGORITHM FOR MULTI-BLOCK CONVEX MINIMIZATION
原文传递
导出
摘要 We have proposed a primal-dual fixed point algorithm (PDFP) for solving minimiza- tion of the sum of three convex separable functions, which involves a smooth function with Lipschitz continuous gradient, a linear composite nonsmooth function, and a nonsmooth function. Compared with similar works, the parameters in PDFP are easier to choose and are allowed in a relatively larger range. We will extend PDFP to solve two kinds of separable multi-block minimization problems, arising in signal processing and imaging science. This work shows the flexibility of applying PDFP algorithm to multi-block prob- lems and illustrates how practical and fully splitting schemes can be derived, especially for parallel implementation of large scale problems. The connections and comparisons to the alternating direction method of multiplier (ADMM) are also present. We demonstrate how different algorithms can be obtained by splitting the problems in different ways through the classic example of sparsity regularized least square model with constraint. In particular, for a class of linearly constrained problems, which are of great interest in the context of multi-block ADMM, can be also solved by PDFP with a guarantee of convergence. Finally, some experiments are provided to illustrate the performance of several schemes derived by the PDFP algorithm. We have proposed a primal-dual fixed point algorithm (PDFP) for solving minimiza- tion of the sum of three convex separable functions, which involves a smooth function with Lipschitz continuous gradient, a linear composite nonsmooth function, and a nonsmooth function. Compared with similar works, the parameters in PDFP are easier to choose and are allowed in a relatively larger range. We will extend PDFP to solve two kinds of separable multi-block minimization problems, arising in signal processing and imaging science. This work shows the flexibility of applying PDFP algorithm to multi-block prob- lems and illustrates how practical and fully splitting schemes can be derived, especially for parallel implementation of large scale problems. The connections and comparisons to the alternating direction method of multiplier (ADMM) are also present. We demonstrate how different algorithms can be obtained by splitting the problems in different ways through the classic example of sparsity regularized least square model with constraint. In particular, for a class of linearly constrained problems, which are of great interest in the context of multi-block ADMM, can be also solved by PDFP with a guarantee of convergence. Finally, some experiments are provided to illustrate the performance of several schemes derived by the PDFP algorithm.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2016年第6期723-738,共16页 计算数学(英文)
关键词 Primal-dual fixed point algorithm Multi-block optimization problems. Primal-dual fixed point algorithm, Multi-block optimization problems.
分类号 O [理学]
  • 相关文献

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部