期刊文献+

基于单个时滞非线性神经元结构储备池的波形识别

Waveform Recognition Based on a Single Time-Delay Nonlinear Neural Reservior
下载PDF
导出
摘要 采用单个时滞非线性神经元结构储备池对不同波形进行识别,研究虚节点个数、反馈强度、输入增益等参数和输入端信噪比对波形识别计算的影响.以方波、正弦波、三角波的识别为任务进行了仿真实验,结果显示:储备池虚拟节点个数为100时最佳;反馈强度和输入增益的参数值分别为0.8和2.2时,储备池的计算性能最佳;在输入端人为加入适度的噪声可降低识别误差,有利于提高波形识别精度. The single time-delay nonlinear neural reservoir method for waveform recognition is studied. The influence of virtual nodes number, feedback strength, input gain and signal to noise ratio of input layer on waveform recognition is analyzed. Simulation experiments are performed to recognize square waveform, sine waveform and triangle waveform. The results show that when the number of virtual nodes is 100,and the feedback strength and the input gain is 2.1 and 0.8 respectively,computing performance of reservoir is the best ; adding moderate white noise deliberately at input can reduce the recognition error and improve the waveform recognition accuracy.
作者 包秀荣
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2016年第6期773-775,780,共4页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 内蒙古自治区高等学校科学研究项目(NJZY031) 内蒙古师范大学科研基金项目(2015YBXM004)
关键词 波形识别 储备池 虚拟节点 反馈强度 输入增益 信噪比 waveform recognition reservoir virtual nodes feedback strength input gain signal to noise ratio
  • 相关文献

参考文献2

  • 1彭宇,王建民,彭喜元.储备池计算概述[J].电子学报,2011,39(10):2387-2396. 被引量:22
  • 2岳荷荷..基于混沌的保密通信和波形识别的应用研究[D].大连理工大学,2015:

二级参考文献70

  • 1史志伟,韩敏.ESN岭回归学习算法及混沌时间序列预测[J].控制与决策,2007,22(3):258-261. 被引量:47
  • 2J Triesch. A gradient nile for the plasticity of a neuron' s intrinsic excitability [ A ]. International Conference on Artificial Neural Networks (ICANN) [ C ]. Springer, Berlin, 2005.65 - 70. 被引量:1
  • 3Jochen J Steil. Online reservoir adaptation by intrinsic plasticity for backpmpagatiou-decorrelation and echo state learning [J]. Neural Networks, 2007,20 (3) : 353 - 364. 被引量:1
  • 4Joschka Boedecker, Oliver Obst, Norbert Michael Mayer, Minoru Asada. Studies on reservoir initialization and dynamics shaping in echo state networks[ A]. The 17th European Sym- posium on Artificial Neural Networks, ESANN 2009[ C] .Amsterdam. 1000 AE. Netherlands. 2009. 227 - 232. 被引量:1
  • 5Mantas Lukosevicius, Dan Popovici, Herbert Jaeger, Udo Siewert. Time Warping Invariant Echo State Networks[ R]. Bremen: Technical Report No. 2, International University Bremen, 2006. 被引量:1
  • 6Jurger Schrnidhuber,Daan Wierstra,Matteo Gagliolo,Fausfino J Gomez. Training recurrent networks by Evolino[ J ]. Neural Computation, 2007,19(3) : 757 - 779. 被引量:1
  • 7T Natschlager, N Bertschinger, R Legenstein. At the edge of chaos:Real-time computations and seN-organized criticality in recurrent neural network[ A]. Advances in Neural Information Processing Systems(NIPS) [ C]. M1T Press, 2004.145 - 152. 被引量:1
  • 8M Salmen, P G Ploger. Echo state networks used for motor control[ A]. Proceedings of the 2005 IEEE International Con- ference on Robotics and Automation [ C ]. Piscataway, NJ 08855-1331,2005.1953 - 1958. 被引量:1
  • 9Francis wyffels, Benjamin Schrauwen. Design of a central pattern generator using reservoir computing for learning human motion[ A ]. Symposium on Learning and Adaptive Behavior in Robotic Systems [C]. Piscataway, NJ 08855-1331,2009. 118- 122. 被引量:1
  • 10Eric Aislan Antonelo, Benjamin Schrauwen. Unsupervised keaming in Reservoir Computing: Modeling HippocampalPlace Cells for Small Mobile Robots~ A1. International Con- ference on Artificial Neural Networks ( ICANN ) [ C ]. Swinger, Berlin, 2009.747 - 756. 被引量:1

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部