期刊文献+

篮球视频中基于AdaBoost分类器的运动员检测方法 被引量:4

An Athlete Detection Method Based on AdaBoost Classifier in Basketball Video
下载PDF
导出
摘要 针对篮球视频中运动员的检测识别问题,提出一种基于AdaBoost分类器的检测方法 .首先,从视频中获取有用帧,并通过SampleCreator软件来标记运动员,提取出全身和上半身矩形图像.然后,基于积分图技术从对象图像中提取Haar特征.接着,利用AdaBoost算法选择出具有较强分类性能的特征,训练一系列的弱分类器,并将其进行级联来构建最终的强分类器.最后,通过强分类器对Haar特征进行判别,从而检测图像中的运动员.实验结果表明,该方法能够准确检测并识别视频中的运动员. For the issue that the athlete detection and recognition in basketball video,a detection method based on AdaBoost classifier is proposed.Firstly,the useful frames are obtained from the video,and through the SampleCreator software to mark the athletes,so as to extract the rectangular image of whole body and upper body.Then,the Haar feature is extracted from the object image based on the integral graph technique.After that,the AdaBoost algorithm is used to train a series of weak classifiers which are used to construct the final classifier.Finally,the Haar features are distinguished by the strong classifier to detect the players in the image.Experimental results show that the proposed method can accurately detect and identify the players in the video.
出处 《湘潭大学自然科学学报》 CAS 北大核心 2016年第4期85-89,共5页 Natural Science Journal of Xiangtan University
基金 湖北省高校教学研究项目(2013160)
关键词 篮球视频 运动员检测 ADABOOST分类器 HAAR特征 basketball video athlete detection AdaBoost classifier Haar feature
  • 相关文献

参考文献6

二级参考文献73

  • 1吕宏伟,毛文燕,陆惠西.流式媒体集成课件的研究与实现[J].计算机应用与软件,2006,23(2):97-98. 被引量:3
  • 2FREUND Y, SCHAPIRE R E. A short introduction to boosting[J].Journal o[Japanese Society for Artificial Intelligence, 1999,14(5): 771 - 780. 被引量:1
  • 3SCHAPIRE R E, FREUND Y, BARTLETT P, et al. Boosting the margin: a new explanation for the effec-tiveness of voting methods[J]. The Annals of Statistics, 1998,26(5): 1651 -1686. 被引量:1
  • 4HUANG Chang, AI Hai-zhou , LI Yuan, et al , Vector boosting for rotation invariant multi-view face detection[CJ II Proceedings of the Tenth IEEE International Con-ference on Computer Vision. Beijing: IEEE, 2005: 446 - 453. 被引量:1
  • 5MIDDENDORF M, KUNDAJE A, WIGGINS C, et al. Predicting genetic regulatory response using classifica-tion[J]. Bioinformatics, 2004,200) :232 - 240. 被引量:1
  • 6OPELT A, PINZ A, FUSSENEGGER M, et al. Ge-neric object recognition with boosting[J]. IEEE Trans-actions on Pattern Analysis and Machine Intelligence, 2006,28(3) :416 - 43l. 被引量:1
  • 7TORR ALBA A, MURPHY K P, FREEMAN W T, Sharing features, efficient boosting procedures for mul-ticlass object detection[CJ II Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE, 2004: 762 -769. 被引量:1
  • 8VIOLA P,JONES M. Rapid object detection using a boosted cascade of simple features[CJ II Proceedings of IEEE Computer Society of Conference on Computer Vision and Pattern Recognition. Kauai , IEEE, 2001: 511 - 518. 被引量:1
  • 9VIOLA P,JONES M. Robust real-time face detection[J]. Internationa[Journal of Computer Vision, 2004,57 (2): 137 - 154. 被引量:1
  • 10FRIEDMANJ, HASTIE T, TIBSHIRANI R. Additive logistic regression: a statistical view of boosting[J]. The Annals of Statistics, 2000,28(2) :337 - 407. 被引量:1

共引文献33

同被引文献29

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部