摘要
由于粮食生产受到社会、经济和气候等多方面因素的影响,造成粮食产量序列的复杂性、随机性和非平稳性。为了准确预测粮食产量,提出基于小波变换的灰度模型(GM)-反演(BP)神经网络[BP神经网络是人工神经网络(AMNN)的一种]相结合的预测方法,首先利用小波变换将非平稳序列转化为若干不同频率分量的平稳序列;然后针对各序列使用灰色GM(1,1)模型建立预测模型,为了进一步提高模型的预测精度,结合BP神经网络对预测残差进行修正;最后通过组合得到粮食产量的预测模型。通过对2011—2014年我国粮食产量数据的预测,表明所提方法的预测精度明显高于GM(1,1)和BP神经网络预测模型,4年的平均预测误差小于1%,能够较准确地预测我国粮食产量。
出处
《江苏农业科学》
北大核心
2016年第12期390-393,共4页
Jiangsu Agricultural Sciences
基金
国家粮食公益项目(编号:201413001)