期刊文献+

一类空间-时间分数阶Whitham-Broer-Kaup方程的行波解 被引量:8

Travelling Wave Solutions of a Class of Space-Time Fractional Whitham-Broer-Kaup Equations
下载PDF
导出
摘要 考虑修正Riemann-Liouville分数阶导数意义下的一类空间-时间Whitham-Broer-Kaup(WBK)方程行波解的存在性,首先将WBK方程化为常微分方程组,然后利用首次积分法得到该方程一些行波解的解析表达式. We considered the existence of travelling wave solutions of a class of space-time Whitham- Broer-Kaup (WBK) equations with modified Riemann-Liouville fractional derivative. First, we turned the WBK equations into the ordinary differential equations, and then got analytical expressions of some travelling wave solutions of this equations by using the first integral method.
作者 郭丽红 周冉 GUO Lihong ZHOU Ran(Institute of Mathematics, J ilin University, Changchun 130012, China)
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第1期7-12,共6页 Journal of Jilin University:Science Edition
基金 吉林省教育厅"十三五"科学技术研究项目(批准号:吉教科合字[2016]第398号)
关键词 空间-时间分数阶WBK方程 修正的Riemann-Liouville分数阶导数 行波解 首次积分方法 space-time fractional WBK equation modified Riemann-Liouville fractional derivative travelling wave solution first integral method
  • 相关文献

参考文献1

二级参考文献11

  • 1Parkes [J. A Note on Travelling-Wave Solutions to Lax's Seventh-Order KdV Equation[J]. Appl Math Cornput , 2009, 215(2): 864-865. 被引量:1
  • 2Wazwaz A M. New Travelling Wave Solutions of Different Physical Structures to Generalized BBM Equation[J]. Phys Lett A, 2006, 355(4/5): 358-362. 被引量:1
  • 3Lax PD. Integrals of Nonlinear Equations of Evolution and Solitary Waves[J]. Commun Pure Appl Math, 1968, 21: 467-490. 被引量:1
  • 4LOU Sen-yue , HUANG Guo-xiang, RUAN Hang-yu. Exact Solitary Waves in a Convecting Fluid[J].J Phys A: Math Gen, 1991, 24(11): L587-L590. 被引量:1
  • 5Wazwaz A M, Helal M A. Nonlinear Variants of the BBM Equation with Compact and Noncompact Physical Structures[J]. Chaos, Solitons &. Fractals, 2005, 26(3): 767-776. 被引量:1
  • 6Kudryashow N A. Meromorphic Solutions of Nonlinear Ordinary Differential Equations[J]. Communin Nonlinear Sci Numer Simul, 2010, 15(10): 2778-2790. 被引量:1
  • 7Yusufoglu E, Bekir A. Symbolic Computation and New Families of Exact Travelling Solutions for the Kawahara and Modified Kawahara Equations[J]. Comput &. Math Appl , 2008, 55(8): 1113-1121. 被引量:1
  • 8Asian I. Exact and Explicit Solutions to Some Nonlinear Evolution Equations by Utilizing the CG' /G)-Expansion Method[J]. Appl Math Cornput, 2009, 215(2): 857-863. 被引量:1
  • 9Biswas A, Konar S, Zerrad E. Soliton Perturbation Theory for the General Modified Degasperis-Procesi Camasa-Holm Equation[J]. Inte[J Mod Math, 2007, 2(1): 35-40. 被引量:1
  • 10Bridges TJ, Derks G. Linear Instability of Solitary Wave Solutions of the Kawahara Equation and Its Generalizations[J]. SIAMJ Math Anal, 2002, 33(6): 1356-1378. 被引量:1

共引文献7

同被引文献22

引证文献8

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部