期刊文献+

形式语言基于Monads的语义计算模型

Semantics Computational Model of Formal Languages Based on Monads
下载PDF
导出
摘要 传统形式语言的语义建模方法在语义解释与规则描述等语义计算方面存在不足,应用范畴论方法的Monads对形式语言的语义计算进行了研究。基于Monads构造Kleisli范畴,在Kleisli范畴的形式化框架内建立语义计算模型,并对该模型进行了应用。与传统语义建模方法相比,所提语义计算模型具有普适性,其语义解释与规则描述的能力更强。 Traditional semantics modelling methods of formal languages have some drawbacks to interpret semantics and describe rule, and this paper explored semantics computation of formal languages by monads which is categorical method. It firstly constructed Kleisli category by monads, presented a semantics computational model in the formal framework of Kleisli category, and then applied it by example. Compared with traditional semantics modelling methods, the semantics computational model presented by this paper is universal and has more strong abilities of semantics inter- preting and rule descripting.
作者 苗德成 奚建清 苏锦钿 MIAO De-cheng XI Jian-qing SU Jin-dian(school of Information Science and Engineering, Shaoguan University, Shaoguan 512005, China School of Software,South China University of Technology,Guangzhou 510640,China School of Computer Science and Engineering, South China University of Technology, Guangzhou 510640, China)
出处 《计算机科学》 CSCD 北大核心 2017年第1期199-202,218,共5页 Computer Science
基金 国家自然科学基金项目(61103039) 广东省自然科学基金项目(S2013010015944) 广东省高等学校优秀青年教师培养计划项目(YQ2014155)资助
关键词 语义计算 MONADS 伴随函子 形式语言 Kleisli范畴 Semantics computing, Monads, Ad joint functor, Formal languages, Kleisli category
  • 相关文献

参考文献6

二级参考文献55

  • 1Bird R. Introduction to Functional Programming using Haskell ( 2nd Edition) [M]. Prentice-Hall, UK, 1998. 被引量:1
  • 2Meijer E, Fokkinga M, Paterson R. Functional Program ming with Bananas, Lenses, Envelopes and Barbed Wire[M]. Hughes J, ed. Functional Programming Languages and Compu-ter Ar chitecture, number 523 in Lect. Notes Comp. Sci., Berlin: Springer, 1991 : 215-240. 被引量:1
  • 3Bird R S, Moor O D. Algebra of Programming [M]. Prentice HalI,UK, 1997. 被引量:1
  • 4Gibbons J. Lecture Notes on Algebraic and Coalgebraie Methods for Calculating Functional Programs[M]. Summer School on Algebraic and Coalgebraic Methods in the Mathematics of Program Construction, Oxford, UK, 2000. 被引量:1
  • 5Greiner J. Programming with Inductive and Co-inductive Types [R]. CMU-CS-92-109. School of Comp. Sci., Carnegie-Mellon Univ. , Pittsburgh, 1992. 被引量:1
  • 6Hensel U, Jacobs B. Coalgebraic Theories of Sequences in PVS[J]. Journal of Logic and Computation, 1999. 被引量:1
  • 7Kieburtz R B. Codata and Comonads in Haskell[Z]. unpublished manuscript, 1999. 被引量:1
  • 8Hinze R. Reasoning about Codata [J]. Lecture Notes in Compu ter Science, 2010,6299 : 42-93. 被引量:1
  • 9Jacobs B. Introduction to Coalgebra: Towards Matbe matics of States and Observations. Book Drah[OL]. http://www. cs. ru. nl/-bart, 2005. 被引量:1
  • 10Hutton G. Fold and Unfold for Program Semantics[C]//Proc. 3rd. ACM SIGH.AN International Conference on Functional Programming. ACM, 1998. 被引量:1

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部