摘要
设p为素数,n为任意的正整数,Smarandache原函数Sp(n)表示最小的正整数k,使得pn|k!,即Sp(n)=min{k∈N:pn|k!}.利用初等数论方法研究方程Sp(1)+Sp(6)+Sp(15)+…+Sp(n(2n-1))=Sp(4n3+3n2-n/6)的可解性,并给出该方程的所有正整数解.
For any positive integer n, let p be a prime, the Smarandache primitive function Sp (n) means the smallest positive integer k such that pn| k!,that is Sp (n) = min{k ∈N :pn ] k! } .By u sing the elementary number theory method, the solvability of the equation Sp(1) +Sp (6) +Sp (15)+…Sp(n(2n-1))= Sp(4n3+3n2 -n/6) is studied,and all positive integer solutions for this equation are given.
出处
《西安工程大学学报》
CAS
2016年第6期869-876,共8页
Journal of Xi’an Polytechnic University
基金
国家自然科学基金资助项目(11226038
11371012)
陕西省教育厅专项基金(14JK1311)