期刊文献+

一类紧支撑正交双向矩阵值小波的构造

Construction of Compactly Supported Orthogonal Two-direction Matrix-valued Wavelet
下载PDF
导出
摘要 文章引入了双向矩阵值多尺度分辨分析和正交矩阵值小波,得到了双向矩阵值小波存在性的充要条件,给出了双向矩阵值小波的构造算法。 The concept two-direction Matrix-values function and two-direction Matrix-values wavelet is generalized to the orthogonal , the necessary and sufficient conditions for two-way matrix wavelet existence, illustrating how to use method to construct aorthogonal two-direction Matrix-values wavelets.
出处 《新疆师范大学学报(自然科学版)》 2016年第4期31-34,共4页 Journal of Xinjiang Normal University(Natural Sciences Edition)
基金 新疆农业大学校前期资助课题(XJAU201524)
关键词 矩阵值小波 正交尺度函数 正交矩阵值小波 两尺度方程 Matrix-valued wavelet Orthogonal scale function Biorthogonal multi-wavelet Two-scale matrix equation
  • 相关文献

参考文献2

二级参考文献31

  • 1杨守志,彭立中.基于重数延长法提升加细向量函数的逼近阶[J].中国科学(A辑),2005,35(12):1347-1360. 被引量:3
  • 2Chang C S and Jin J. Separation of corona using wavelet packet transform and neural network for detection of partial discharge in gasinsulated substations. IEEE Trans. Power Delivery. 2005, 20(2): 1363-1369. 被引量:1
  • 3Zhang N and Wu X. Lossless compression of color mosaic images IEEE Trans Image processing, 2006, 15(16): 1379-1388. 被引量:1
  • 4Chen Q. Cheng Z and Wang C. Existence and construction of compactly supported biorthogonal multiple vector-valued wavelets. J. Appl. Math. Comput., 2006, 22(3): 101-115. 被引量:1
  • 5Bacchelli S, Cotronei M and Sauer T. Wavelets for multichannel signals. Adv. Appl. Math., 2002,29: 581-598. 被引量:1
  • 6Fowler J E and Li H. Wavelet transforms for vector fields using omnidirectionally balanced multiwavelets. IEEE Trans. Signal Processing, 2002, 50(12): 3018-3027. 被引量:1
  • 7Cohen A and Daubeches I. On the instability of arbitrary biorthogonal wavelet packets. SIAM Math. Anal., 1993,24(5): 1340-1354. 被引量:1
  • 8Chen Q, Cao H and Shi Z. Construction and characterization of orthogonal multivariate vectorvalued wavelet packets. Chaos, Solitons & Fractals. 2009,40 (4): 835-1844. 被引量:1
  • 9Daubechies I. Ten Lectures on Wavelets, Ten Lectureson Wavelets. CBM-SNSF Series in Applied Math # 61. Philadelphia: SIAM Publ, 1992 被引量:1
  • 10Daubechies I. Orthonormal basis of compactly supported wavelet. Comm Pure and Appl Math, 41(7): 909-996 (1988) 被引量:1

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部