摘要
The dislocation pipe diffusion of Mn during annealing of 5Mn steel was experimentally investigated using transmission electron microscopy (TEM). Many dislocations existed inside the ferrite and terminated at the α/γin- terface of the sample after intercritieal annealing at 650 ℃ for 1 min. Line scans of Mn distribution demonstrated a high Mn concentration in austenite and Mn enrichment at dislocations, indicating that the dislocation pipe diffusion of Mn during intercritical annealing occurred in addition to the γ/α interface diffusion. In-situ TEM observations at 500 ℃revealed that due to Ostwald ripening, large cementite precipitates grew while small cementite precipitates dissolved via Mn diffusion along the dislocations between them.
The dislocation pipe diffusion of Mn during annealing of 5Mn steel was experimentally investigated using transmission electron microscopy (TEM). Many dislocations existed inside the ferrite and terminated at the α/γin- terface of the sample after intercritieal annealing at 650 ℃ for 1 min. Line scans of Mn distribution demonstrated a high Mn concentration in austenite and Mn enrichment at dislocations, indicating that the dislocation pipe diffusion of Mn during intercritical annealing occurred in addition to the γ/α interface diffusion. In-situ TEM observations at 500 ℃revealed that due to Ostwald ripening, large cementite precipitates grew while small cementite precipitates dissolved via Mn diffusion along the dislocations between them.
基金
Item Sponsored by National Key Research and Development Program of China(2016YFB0700402)
National Basic Research Program of China(2010CB630800,2015CB921700)
National Natural Science Foundation of China(51671112,51471096,51390471,11374174)
Tsinghua University Initiative Scientific Research Program(20141081200,20131089311)