期刊文献+

基于概率神经网络(PNN)的矿井提升机故障诊断研究 被引量:8

Research on fault diagnosis of mine hoist based on probabilistic neural network
下载PDF
导出
摘要 煤矿主副井提升机是煤矿生产中的关键设备,在井下煤炭提升以及设备和人员运送环节承担着重要作用,其工作状况的好坏,将直接影响矿井能否正常生产。本文以提升机主轴装置为研究对象,研究运用小波包能量法对监测的振动信号提取特征向量,基于概率神经网络建立故障诊断模型,在Matlab环境下进行仿真。结果表明,基于概率神经网络(PNN)建立的故障诊断模型收敛速度快,能够对提升机主轴装置的故障类型及故障位置进行很好地预测。 The main and auxiliary shafts hoist of mine bears the important task of lifting and transporting equipment which is the key equipment in coal production .What’s more ,the quality of their working conditions directly affects the production of the mine .In this paper ,the hoist spindle apparatus was used as the research object ,we tried to use wavelet packet energy method to extract the feature vectors from monitoring vibration signals and establish the fault diagnosis model based on probabilistic neural network(PNN) .The simulation results in MATLAB environment showed that the mine hoist fault diagnosis model based on PNN has fast convergence and can well predict the fault type and position .
作者 宋伟 尹涛
出处 《电子测量技术》 2016年第11期187-189,194,共4页 Electronic Measurement Technology
关键词 矿井提升机 故障诊断 小波包分解 概率神经网络 mine hoist fault diagnosis wavelet packet decomposition probabilistic neural network
  • 相关文献

参考文献14

二级参考文献131

共引文献258

同被引文献77

引证文献8

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部