期刊文献+

Microscale Chemical Features of Sediment-Water Interface in Hongfeng Lake 被引量:2

Microscale Chemical Features of Sediment-Water Interface in Hongfeng Lake
原文传递
导出
摘要 In situ microscale distributions of 02, H2S, pH and redox potential in sediments of Hongfeng Lake, SW China, were investigated using the powerful microsensor technique. Our results show that O2 was depleted within the top 3.9 mm in surface sediments, and H2S was subsequently detected at -6.0 mm depth, and reached its maximum concentrations at -25 mm. The degradation of organic matter and reduction of sulfate might be the major pathways of producing H2S in sediments, pH rapidly reduced in surface layers mainly due to H+ release in the oxidation of organic matter. Eh also decreased sharply in surface sediments, probabl indicating the coexistence of Fe and Mn oxides with O2 in aerobic region. Furthermore, the programme of PROFILE was applied to model the 02 gradient, and good fit was obtained between the simulative values and the factual values both in sediments and in the diffusive boundary layer (DBL). The results indicate that the depth-integrated O2 consumption rates within sediments were 0.083 and 0.134 nmol·m-3·s-1 in site S1 and site S2, respectively. In addition, there were distinct DBL in two sediment profiles, with 1.2 mm thickness in S1 and 0.9 mm thickness in S2. The diffusive fluxes of O2 within the DBL were 67.13 nmol·m-2·s-1 in S1 and 88.54 nmol·m-2·s-1 in S2. In situ microscale distributions of 02, H2S, pH and redox potential in sediments of Hongfeng Lake, SW China, were investigated using the powerful microsensor technique. Our results show that O2 was depleted within the top 3.9 mm in surface sediments, and H2S was subsequently detected at -6.0 mm depth, and reached its maximum concentrations at -25 mm. The degradation of organic matter and reduction of sulfate might be the major pathways of producing H2S in sediments, pH rapidly reduced in surface layers mainly due to H+ release in the oxidation of organic matter. Eh also decreased sharply in surface sediments, probabl indicating the coexistence of Fe and Mn oxides with O2 in aerobic region. Furthermore, the programme of PROFILE was applied to model the 02 gradient, and good fit was obtained between the simulative values and the factual values both in sediments and in the diffusive boundary layer (DBL). The results indicate that the depth-integrated O2 consumption rates within sediments were 0.083 and 0.134 nmol·m-3·s-1 in site S1 and site S2, respectively. In addition, there were distinct DBL in two sediment profiles, with 1.2 mm thickness in S1 and 0.9 mm thickness in S2. The diffusive fluxes of O2 within the DBL were 67.13 nmol·m-2·s-1 in S1 and 88.54 nmol·m-2·s-1 in S2.
出处 《Journal of Earth Science》 SCIE CAS CSCD 2016年第6期1038-1044,共7页 地球科学学刊(英文版)
基金 supported by the National Natural Science Foundation of China (Nos.41173125 and 41403113)
关键词 MICROSCALE chemical feature DBL SEDIMENT Hongfeng Lake. microscale, chemical feature, DBL, sediment, Hongfeng Lake.
  • 相关文献

参考文献3

二级参考文献42

共引文献43

同被引文献33

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部