期刊文献+

基于误差椭球的激光测量系统的不确定度分析 被引量:15

Uncertainty analysis of laser radar measurement system based on error ellipsoid theory
下载PDF
导出
摘要 为了对3维激光扫描技术的测量精度做出评估,以激光雷达测量系统为研究对象,基于误差椭球理论建立了测量系统的点位误差模型;依据点云平面误差椭球的分布特性,提出了点云拟合平面的不确定度模型,用于评估与拟合平面关联的尺寸测量精度;通过对箱体类物体高度的测量实验,获得了实际测量不确定度,并与模型仿真结果进行了对比。结果表明,该模型可较准确地估算出高度的测量不确定度,从而验证了其有效性及实际意义。 In order to provide measurement accuracy evaluation for 3-D laser scanning devices, a laser radar measurement system ( LRMS) was choosed as the research object and uncertainty model of point cloud fitting plane was proposed. After experimental verification, a single-point error ellipsoid model for the LRMS based on error ellipsoid theory was established. According to the distribution characteristics of plane error ellipsoid of point cloud, uncertainty model of point cloud fitting plane was proposed to evaluate and fit the dimension measurement accuracy associated with plane. Verification experiments were performed by using the LRMS to measure the height of a cubic object, and the measurement accuracy results were evaluated and compared with the simulated results using the proposed uncertainty model. The results show that the model can accurately estimate the uncertainty of height measurement. The research has the validity and practical significance.
出处 《激光技术》 CAS CSCD 北大核心 2017年第1期29-33,共5页 Laser Technology
关键词 测量与计量 不确定度 误差椭球理论 激光雷达 点云 measurement and metrology uncertainty error ellipsoid theory laser radar point cloud
  • 相关文献

参考文献3

二级参考文献31

  • 1郑德华,沈云中,刘春.三维激光扫描仪及其测量误差影响因素分析[J].测绘工程,2005,14(2):32-34. 被引量:238
  • 2陶庭叶,高飞.利用误差椭球进行点位变形分析[J].合肥工业大学学报(自然科学版),2005,28(11):1449-1451. 被引量:4
  • 3Sanyal A K, Lee T, Leok M, et al. Global optimal attitude estimation using uncertainty ellipsoids [J]. Systems & Control Letters, 2008, 57(3): 236-245. 被引量:1
  • 4Barenthin M, Hjalmarsson H. Identification and control: Joint input design and H∞ state feedback with ellipsoidal parametric uncertainty via LMIs [J]. Auto- matiea, 2008, 44(2): 543-551. 被引量:1
  • 5Polyak B T, Nazin S A, Durieu C, etal. Global optimal attitude estimation using uncertainty ellipsoids [J]. Automatica, 2004, 40(7): 1171-1179. 被引量:1
  • 6A.M. Wallace, G.zhang, Y Gallaher. Scan Calibration or Compensation in A Depth Imaging System [J]. Pattern Recognition Letters. 1998, ( 19 ):605-612. 被引量:1
  • 7Zhou Limin,Hu Dezhou, Lu Bingheng. A Study of the Precision Factors of the Laser Scanning Triangulation Method[J]. Acta Metrological Sinica. 1999, (19):No.2. 被引量:1
  • 8K Harding. Calibration Methods for 3D Measurement Systems[J]. Ge Research& Development Center.2001,2. 被引量:1
  • 9Hsi-Yung Feng,Yixin Liu, Fengfeng Xi. Analysis of Digitizing Errors of a Laser Scanning System [J]. Jouranl of The International Societies for Precision Engineering and Nanotechnology. 2001, (25) :185-191. 被引量:1
  • 10Godin, Rioux, Beraldin, Levoy, Coumoyer, Blais. An Assessment of Laser Range Measurement on Marble Surfaces[J].5th Conference on Optical 3D Measurement Techniques,Vienna, Austria., 2001. 被引量:1

共引文献286

同被引文献127

引证文献15

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部