摘要
提出了多项学习免疫优化算法OL-CAIS求解全局优化问题.将混沌优化理论加入到免疫算法中,同时在算法中引入一个类杂交算子的搜索方程,更注重整个群体的交互信息,重新定义了搜索方式,然后,通过正交实验构造一个正交学习策略充分利用了搜索空间中的有用信息、正交设计小样本特性,产生更优秀的子代,保证多样化的有效搜索.
This paper presents the immune optimization algorithm based on multiple learning OL-CAIS to solve global optimization problems. Chaos optimization theory is proposed to join the immune algorithm, and at the same time we introduced in the algorithm a class of hybrid operator search equation paying more attention to the interactive information of whole group.The search way is redefined and then,through the orthogonal experiment,an orthogonal learning strategy is formed which makes full use of the useful in-formation in the search space and orthogonal design of small sample characteristics, to produce a better generation and ensure the effective of diverse search.
出处
《湖北民族学院学报(自然科学版)》
CAS
2016年第4期424-429,共6页
Journal of Hubei Minzu University(Natural Science Edition)
基金
国家自然科学基金青年科学基金项目(61403349)
河南省教育厅科学技术研究重点项目基础研究计划项目(14B520066
15A520033)
郑州轻工业学院博士基金项目(2013BSJJ044)
郑州轻工业学院研究生科技创新基金资助项目
郑州轻工业学院大学生科技活动项目
关键词
人工免疫
混沌优化
杂交算子
正交学习
artificial immune
chaos optimization
hybrid operator
orthogonal learning