摘要
基于巴顿公式中的标准节理面轮廓线建立微裂隙几何模型,采用纳维–斯托克斯方程,并将浆液视为宾汉姆流体,建立微裂隙注浆扩散有限元模型,对微裂隙注浆过程中浆液扩散过程展开计算分析,获得裂隙粗糙度、隙宽以及浆液黏度等因素对浆液扩散的影响规律。计算结果表明,当浆液黏度较高时,浆液流动损失主要受黏滞力控制,裂隙等效隙宽随浆液黏度呈非线性增长。对于具有相同粗糙程度的裂隙,等效隙宽随黏度的增长曲线均存在一个明显的拐点,随着裂隙粗糙程度增加,拐点逐渐向前推移,并且突变更加明显。通过多元函数拟合建立等效隙宽与浆液黏度以及裂隙粗糙度的拟合公式。当浆液黏度以及裂隙的粗糙度较低时该公式存在一定误差,而在考虑实际注浆需要所对应的参数变化范围内,该公式均具有较好的拟合效果。研究结果对微裂隙岩体注浆扩散理论具有一定借鉴意义。
Based on the standard joint surface profile of Barton model,geometry model of fracture was constructed,and the finite element model was established by using Navier-stokes equation and considering grout as Bingham fluid. Grout spreading process was simulated and the influence on grout spreading process from fracture roughness,fracture gap width and grout viscosity was acquired. Results show that,when grout viscosity is high,the energy loss is mainly caused by viscosity force. The equivalent gap width increases nonlinearly with grout viscosity. When fracture roughness is constant,the equivalent gap width increment curve has an inflection point. With fracture roughness increasing,the inflection point move forward gradually. A fitting formula was proposed between equivalent gap width and fracture roughness through multiple function fitting with a quite accuracy. Research result may provide some reference to fracture rock grouting theory.
出处
《岩石力学与工程学报》
EI
CAS
CSCD
北大核心
2016年第A02期3492-3500,共9页
Chinese Journal of Rock Mechanics and Engineering
关键词
岩石力学
浆液扩散
等效隙宽
粗糙度系数
数值分析
rock mechanics
grout spreading
equivalent gap width
roughness coefficient
numerical analysis