期刊文献+

基于T-S模糊模型的非线性系统广义预测控制 被引量:2

T-S fuzzy model based generalized predictive control for nonlinear systems
下载PDF
导出
摘要 针对离散非线性系统,提出一种基于T-S模糊模型的广义预测控制方法。该方法将采样点的T-S模糊模型转化为采样点线性模型与非线性误差叠加的线性形式,通过迭代修正非线性误差,使具有非线性误差的线性模型预测控制律逐渐逼近采样点T-S模糊模型预测控制律。同时,该预测控制方法也能适用于当系统受输入输出约束时的控制。仿真结果验证了所提出的TS模糊模型广义预测方法有效。 For discrete nonlinear systems, a new T - S fuzzy model based generalized predictive con- trol approach is proposed. In this method, the T -S fuzzy model at sampling points is converted into a superposition linear form of the linear model at sample point and nonlinear error. The predictive control law of T - S fuzzy model at sampling points is gradually approached by the predictive control law of linear model at sample point through iteratively correcting nonlinear error which is the difference between the nonlinear model and linear model. Meanwhile, the method can be applied to the system which is con- strained for the input and output. Simulation results show that the T - S fuzzy model based generalized predictive control approach in this paper is effective.
作者 刘石红
出处 《工业仪表与自动化装置》 2016年第6期3-7,共5页 Industrial Instrumentation & Automation
基金 国家自然科学基金(61461046)
关键词 T-S模糊模型 广义预测控制 采样点线性模型 非线性误差 迭代修正 T - S fuzzy model generalized predictive control sampling points linear model nonlin-ear error iterative correction
  • 相关文献

参考文献5

二级参考文献44

共引文献72

同被引文献20

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部