摘要
水稻是最重要的粮食作物之一,提高水稻产量一直是育种的主要目标。水稻四倍体相对于二倍体具有籽粒变大、粒重增加的特点,研究基因组加倍后籽粒大小基因的调控模式,在育种应用方面具有十分重要的意义。本文以二倍体-四倍体水稻为材料,分析6个控制籽粒大小基因在幼穗发育中的表达差异,同时结合转基因实验,探讨基因剂量增加对基因表达水平和籽粒大小的影响。结果发现:基因组加倍后,水稻的发育进程不变,但株高增加,叶片变宽,籽粒变大,增大后的籽粒在籼稻表现为长、宽均增加显著,而在粳稻中长度比宽度增加更为明显。进一步分析控制籽粒大小基因的表达差异情况,发现这些基因的表达不仅受发育时期的影响,在籼粳亚种间也明显不同,即受遗传背景的影响。在基因组加倍的情况下,正调控基因GS5、HGW的表达普遍高于对应的二倍体;负调控基因GS3在籼稻D9311中趋于下调或沉默,而在粳稻DBl中趋于上调,GW2在D9311中上调,而在DBl中趋于沉默。通过转基因实验分析负调控基因GW2在二倍体Bl中的表达趋势,发现其在基因剂量线性增加的情况下,表达水平高于二倍体和四倍体,导致其籽粒变小。本研究结果有助于了解水稻中控制籽粒大小的基因在二倍体和四倍体中的表达模式,为高产育种提供理论依据。
Rice is one of the most important staple crops. It has been the major focus in breeding program to im-prove grain yield. A unique feature of tetraploid rice is the increased grain size and weight compared to diploid. Therefore, investigating the effects of genome doubling on expression of genes regulating grain size is important for yield improvement in rice breeding program. In this study, we analyzed differential expression of six genes regulating grain size in young panicles of various developmental stages between diploid and tetraploid rice. Transgenic ap- proaches were employed to explore the dosage effects on gene expression and grain size. The results showed that genome duplications did not influence the developmental patterns of rice growth, but enhanced plant height, leaf width and grain size. The grain length and width in lndica tetraploid increased significantly, but the grain length showed more obvious change than width in Japonica tetraploid. The expression levels were affected not only by the developmental stages, but also by genetic background. Upon genome doubling, the positive regulation gene GS5 and HGW expression levels were generally higher in tetraploid than the corresponding diploid. Negative regulation gene GS3 in Indica tetraploid tended to be down-regulated or silenced, but increased in Japonica tetraploid. Another nega- tive regulation GW2 was up-regulated in Indica tetraploid and silenced in Japonica tetraploid. The extra copies of GW2 in diploid transgenic lines exerted a gene dosage effect that resulted in the higher expression level than that of wild type diploid and tetraploid, which causes small grain formation in transgenic lines. Our results will help to un- derstand the function of genes regulating the grain size in the diploid and tetraploid, and provide a theoretical basis for yield improvement.
出处
《遗传》
CAS
CSCD
北大核心
2016年第12期1102-1111,共10页
Hereditas(Beijing)
基金
国家重点研发计划(编号:2016YFD0100406)资助~~
关键词
水稻
基因组加倍
四倍体
籽粒大小基因
负调控
rice
genomic doubling
tetraploid
genes controlling grain size
negative regulation