摘要
应用微分方程分支理论,研究食饵具有传染病和两时滞的捕食模型的稳定性和Hopf分支问题。以模型两个时滞的不同组合为分支参数,得到正平衡点局部渐近稳定和Hopf分支存在的充分条件。最后,用Matlab软件进行数值模拟,验证了结论的正确性。
The stability and Hopf bifurcation of predation model with infectious disease in the prey and two delays are re- searched by using the bifurcation method of differential equations. Sufficient conditions for the locally asymptotic stability of the model and existence of the Hopf bifurcation are obtained by regarding different combination of the two delays as the bifurcation parameter. Finally, Matlab is employed to carry out numerical simulation to verify the results.
出处
《世界科技研究与发展》
CSCD
2016年第6期1202-1206,共5页
World Sci-Tech R&D
基金
国家自然科学基金(61473237)
陕西省自然科学基础研究计划项目(2016JM1024)
西京学院科研项目(XJ160143)
西京学院教改项目(JGYB1645)资助