期刊文献+

食饵具有传染病和两时滞的捕食-食饵模型 被引量:2

Predator-prey Model with Infectious Disease in Prey and Two Delays
原文传递
导出
摘要 应用微分方程分支理论,研究食饵具有传染病和两时滞的捕食模型的稳定性和Hopf分支问题。以模型两个时滞的不同组合为分支参数,得到正平衡点局部渐近稳定和Hopf分支存在的充分条件。最后,用Matlab软件进行数值模拟,验证了结论的正确性。 The stability and Hopf bifurcation of predation model with infectious disease in the prey and two delays are re- searched by using the bifurcation method of differential equations. Sufficient conditions for the locally asymptotic stability of the model and existence of the Hopf bifurcation are obtained by regarding different combination of the two delays as the bifurcation parameter. Finally, Matlab is employed to carry out numerical simulation to verify the results.
作者 章培军 张慧
出处 《世界科技研究与发展》 CSCD 2016年第6期1202-1206,共5页 World Sci-Tech R&D
基金 国家自然科学基金(61473237) 陕西省自然科学基础研究计划项目(2016JM1024) 西京学院科研项目(XJ160143) 西京学院教改项目(JGYB1645)资助
关键词 两时滞 HOPF分支 捕食-食饵模型 渐近稳定 two delays Hopf bifurcation predator-prey model asymptotic stability
  • 相关文献

参考文献5

二级参考文献42

  • 1庞国萍,陈兰荪.具饱和传染率的脉冲免疫接种SIRS模型[J].系统科学与数学,2007,27(4):563-572. 被引量:25
  • 2Gao S J, Chen L S, Teng Z D. Pulse vaccination of an SEIR epidemic model with time delay[J]. Nonlinear Anal:RWA,2008, 9 C 2) :599 - 607. 被引量:1
  • 3Hofbauer J, Sigmund K. Evolutionaly Games and Populatiion Dynamics[ M ]. Cambridge :Cambridge University, 1998. 被引量:1
  • 4Pei Y Z, Liu S Y, Gao S J, et al. A delayed SEIQR epidemic model with pulse vaccination and the quarantine measure [ J ]. Comput Math Appl,2009,58( 1 ) :135 - 145. 被引量:1
  • 5Zliang S W, Wang F Y, Chen L S. A food chain system with density - dependent birth rate and impulsive perturbations [ J l- Ady Complex Systems, 2006,9 (3) : 1 - 14. 被引量:1
  • 6Hethcote H, Ma Z E, Liao S B. Effects of quarantine in six endemic models for infectious diseases[ J ]. Math Biosciences,2002, 180(1/2) :141 - 160. 被引量:1
  • 7Donofrio A. Stability properties of pulse vaccination strategy, in SEIR epidemic model[ J]. Math Biosciences ,2002,179( 1 ) :57 -72. 被引量:1
  • 8Zhou Y C, Liu H W. Stability of periodic solution for an SIS model with pulse vaccination [ J ]. Math Comput Model, 2003, 38(3) :299 -308. 被引量:1
  • 9Gao S J,Chen L S,Teng Z D.Pulse vaccination of anSEIR epidemic model with time delay[J].Nonlinear Analysis:Real World Application,2008,9(2):599-607. 被引量:1
  • 10Zhang T L,Liu J L,Teng Z D.Stability of Hopf bifurcationof a delayed SIRS epidemic model with stagestructure[J].Nonlinear Analysis:Real World Applications,2010,11(1):293-306. 被引量:1

共引文献7

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部