期刊文献+

基于免疫机理的设备异常度检测与故障诊断快速融合方法研究 被引量:22

Research on the rapid fusion method for equipment abnormal degree detection and fault diagnosis based on immune mechanism
下载PDF
导出
摘要 针对设备异常度检测与故障诊断相分离的问题,首先基于数据势场理论,对设备状态空间的划分方法进行研究,在此基础上详细地研究了设备异常度检测与故障诊断快速融合诊断的机理,提出了应用于设备融合诊断的单故障非己势场检测器。然后以凯斯西储大学轴承标准数据集为例,对所提出的设备快速融合诊断方法的合理性进行了验证。最后通过故障隶属度曲线,证明了所提出的融合方法的有效性。 Aiming at the separation of equipment abnormal degree detection and fault diagnosis,it analyzes the division method of equipment state space,discusses the equipment abnormal degree and fault diagnosis rapid fusion mechanism,proposes the single fault of non- self- potential field detector used for equipment fusion diagnosis. Taking the bearing data sets of Case Western Reserve University as example,it verifies the rationality of the proposed equipment rapid fusion diagnosis method. At last,it uses the fault membership degree curve to prove the effectiveness of the proposed fusion method.
出处 《机械设计与制造工程》 2016年第11期96-101,共6页 Machine Design and Manufacturing Engineering
基金 国家自然科学基金青年基金资助项目(61603238)
关键词 设备检测 故障诊断 异常度 单故障非己势场检测器 快速融合诊断 equipment detection fault diagnosis abnormal degree SFNPF-detectors rapid fusion diagnosis
  • 相关文献

参考文献3

二级参考文献22

  • 1刘树林,黄文虎,夏松波,陈业生.基于免疫机理的往复压缩机气阀故障检测方法[J].机械工程学报,2004,40(7):156-160. 被引量:20
  • 2Bennett K P,Blue J A.A support vector machine approach to decision trees[C] //Proceedings of the IEEE International Joint Conference on Neural Networks,Anchorage:IEEE,1998:2396-2401. 被引量:1
  • 3Sadik K,Bekir H A,Halife K,et al.Medical application of information gain-based artificial immune recognition system (IG-AIRS):Classification of microorganism species[J].Expert Systems with Applications,2009,36(1):5168-5172. 被引量:1
  • 4Seral O,Salih G,Sad1k K,et al.Use of kernel functions in artificial immune systems for the nonlinear classification problems[J].IEEE Transactions on Information Technology in Biomedicine,2009,13(4):621-628. 被引量:1
  • 5Muller K R,Mika S,Ratsch G,et al.An introduction to kernel-based learning algorithms[J].IEEE Transactions on Neural Networks,2001,12(2):181-201. 被引量:1
  • 6Wlodzislaw D.Datasets used for classification:Comparison of results[EB/OL].[2009-10].http://www.is.umk.pl/projects/data-sets.html. 被引量:1
  • 7Timmis J,Hone A,Stibor T,et al.Theoretical advances in artificial immune systems[J].Theoretical Computer Science,2008,403(1):11-32. 被引量:1
  • 8Watkins A,Timmis J,Boggess L.Artificial immune recognition system (AIRS):An immune-inspired supervised learning algorithm[J].Genetic Programming and Evolvable Machines,2004,5(3):291-317. 被引量:1
  • 9Kevin L,France C,Christopher C,et al.Generating compact classifier systems using a simple artificial immune system[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B:Cybernetics,2007,37(5):1344-1356. 被引量:1
  • 10Lukasz J,Thomas F,Adam K.Classification of breast cancer malignancy using cytological images of fine needle aspiration biopsies[J].Applied Image Processing,2008,18(1):75-83. 被引量:1

共引文献9

同被引文献168

引证文献22

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部