摘要
首先在Caputo分数阶导数意义下,针对导数阶数在0到1开区间的一类分数阶区间系统,探讨了系统的量化反馈镇定问题。采用扇形界(sector bound)思想研究该系统的量化反馈控制器设计。通过设计适合的静态量化反馈控制器,得到分数阶区间系统Mittag-Leffler镇定定理。其次,利用Lyapunov直接方法和Mittag-Leffler型稳定理论,证明了分数阶区间系统的状态量化反馈镇定和输出量化反馈镇定定理。
Firstly, the quantized feedback stabilization problem is discussed for the fractional order interval sys-tem with Caputo-type fractional derivative where the order of the derivative is in the interval(0,1). The sector bound method is used to study the quantized feedback stabilization controller's designing for the system. The fractional order interval system's Mittag-Leffler type stabilization theorems are obtained by designing the reasona-ble static quantized feedback stabilization controller. Secondly, the state quantized feedback stabilization and output quantized feedback stabilization Lyapunov theorems for the fractional order interval system are shown by u-sing the Lyapunov directed method and Mittag-Leffler type stability theory. Finally, an example is provided to il-lustrate the main theorem.
出处
《大庆师范学院学报》
2016年第6期49-53,共5页
Journal of Daqing Normal University
基金
大庆市科技计划项目"几类分数阶微分方程稳定性与应用研究"(szdfy-2015-63)