期刊文献+

一类分数阶区间系统的静态量化反馈镇定分析

Static Quantized Feedback Stabilization Analysis for One Class of the Fractional Order Interval System
下载PDF
导出
摘要 首先在Caputo分数阶导数意义下,针对导数阶数在0到1开区间的一类分数阶区间系统,探讨了系统的量化反馈镇定问题。采用扇形界(sector bound)思想研究该系统的量化反馈控制器设计。通过设计适合的静态量化反馈控制器,得到分数阶区间系统Mittag-Leffler镇定定理。其次,利用Lyapunov直接方法和Mittag-Leffler型稳定理论,证明了分数阶区间系统的状态量化反馈镇定和输出量化反馈镇定定理。 Firstly, the quantized feedback stabilization problem is discussed for the fractional order interval sys-tem with Caputo-type fractional derivative where the order of the derivative is in the interval(0,1). The sector bound method is used to study the quantized feedback stabilization controller's designing for the system. The fractional order interval system's Mittag-Leffler type stabilization theorems are obtained by designing the reasona-ble static quantized feedback stabilization controller. Secondly, the state quantized feedback stabilization and output quantized feedback stabilization Lyapunov theorems for the fractional order interval system are shown by u-sing the Lyapunov directed method and Mittag-Leffler type stability theory. Finally, an example is provided to il-lustrate the main theorem.
出处 《大庆师范学院学报》 2016年第6期49-53,共5页 Journal of Daqing Normal University
基金 大庆市科技计划项目"几类分数阶微分方程稳定性与应用研究"(szdfy-2015-63)
关键词 Caputo型导数 分数阶导数 量化器 Mittag-Leffler型稳定 Caputo type derivative Fractional order derivative Quantizer Mittag-Leffler type stability.
  • 相关文献

参考文献3

二级参考文献27

  • 1年晓红,王天成.基于LMI的Lurie控制系统的鲁棒绝对稳定性判据[J].长沙铁道学院学报,2000,18(4):74-79. 被引量:11
  • 2年晓红.Lurie型控制系统的鲁棒决定稳定性[J].控制理论与应用,1995,12(5):641-645. 被引量:47
  • 3LORENZ E N.Deterministic Nonperiodic Flow[J].Journal of the Atmospheric Sciences,1963,20(2):130-141. 被引量:1
  • 4HILBORN R C.Chaos and Nonlinear Dynamics:An Introduction for Scientists and Engineers[M].New York:Oxford University Press,2000:1-10. 被引量:1
  • 5R(O)SSLER O E.An Equation for Continuous Chaos[J].Physics Letters A,1976,57(5):397-398. 被引量:1
  • 6B(O)SSLER O E.Continuous Chaos-four Prototype Equations[J].Annals of the New York Academy of Sciences,1979,316:376-392. 被引量:1
  • 7CHEN G,UETA T.Yet Another Chaotic Attractor[J].International Journal of Bifurcation and Chaos,1999,9(7):1465-1466. 被引量:1
  • 8L(U) J,CHEN G.A New Chaotic Attractor Coined[J].International Journal of Bifurcation and Chaos,2002,12 (3):659-661. 被引量:1
  • 9LIU C,LIU L,LIU T,et al.A New Butterfly-shaped Attractor of Lorenz-like System[J].Chaos Solitons & Fractals,2006,28(5):1196-1203. 被引量:1
  • 10LIU C.A Novel Chaotic Attractor[J].Chaos Solitons & Fractals,2009,39(3):1037-1045. 被引量:1

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部