摘要
合理的土壤模型对直流极的设计至关重要,因此当直流极附近存在江河湖泊时,需重点考虑其对直流极设计的影响。为此采用边界元法分析计算了江河湖泊对直流极地电位分布、跨步电势和散流电流分布的影响,说明了在直流极设计时考虑江河湖泊影响的必要性。并提出将含河流的层状土壤即层状土壤中含块状土壤等效为块状土壤,当块状土壤的面积是直流极面积的100倍时,2者之间的最大电位差值<3%,从而验证了将层状土壤中含块状土壤等效为块状土壤模型是有效的。在此基础上,采用边界元法计算直流极附近的电场和电位分布,结果表明:直流极附近河流中人体和动物的安全性可能存在威胁,建议增大直流极埋深,以确保人身和动物的安全。
Reasonable soil model is critical for DC ground pole design, so when rivers and lakes are very near to DC ground pole, it is necessary to consider the effects of rivers and lakes on the DC ground pole design. A boundary element method is used to analyze and calculate the effects of rivers and lakes on the potential distribution, step potential and dif- fuser current distribution of DC ground pole, indicates that it is needed to consider the impact of rivers and lakes in the DC ground pole design. Layered soil containing rivers and lakes, namely, layered soil containing soil with massive texture, is equivalent to soil with massive texture, and the potential difference between the two is than 3% when the crumbly area is 100 times of DC ground pole area, which proves less the equivalent method reasonabilty and feasibilty. Thereby, the potential distribution and electric field distribution near the DC ground pole are calculated using the boundary element method. Calculation of a DC ground pole shows that there may be security issue of human and animal in river near the DC ground pole. It is suggested that increasing the depth of DC can ensure the safety of human being and animals.
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2016年第12期3868-3874,共7页
High Voltage Engineering
关键词
直流接地极
边界元法
块状土壤
江河湖泊
安全性
DC ground pole
boundary element method
soil with massive texture
rivers and lakes
safety