期刊文献+

栅矢混合的移动群智感知系统任务分发方法

Raster-vector mixed task distribution method for mobile crowd sensing system
下载PDF
导出
摘要 针对Zoom中基于栅格任务地图的分发方法中冗余数据量大、不支持任务信息渐进传输等缺点,提出了一种栅矢混合的移动群智感知系统任务分发方法。该方法通过结合栅格数据和矢量数据的优势,有效降低了冗余数据量。此外还提出了使用道格拉斯普克算法或任务优先级条件对任务信息进行渐进传输的方法。实验结果表明,与原来Zoom中使用基于GIF格式的STIF格式作为任务信息载体的方式相比,该方法能有效降低任务分发过程中所使用的数据量。 To solve the problem of Zoom that raster-map-based task distribution method has a large amount of redundant data and does not support progressive transmission, a novel raster-vector mixed task distribution method is proposed. This method combines the advantages of raster and vector data and reduces the amount of redundant data effectively. It also proposes a method to support progressive transmission based on Douglas Peucker algorithm or task priority conditions. Experimental results indicate that this approach can effectively reduce the amount of data transmission compared to Zoom’s method which uses STIF format based on GIF format to carry task information.
作者 洪晨 周四望
出处 《计算机工程与应用》 CSCD 北大核心 2016年第23期130-134,171,共6页 Computer Engineering and Applications
基金 湖南省自然科学基金(No.14JJ2051)
关键词 移动群智感知 任务分发 栅矢混合 渐进传输 mobile crowd sensing task distribution raster-vector mixed progressive transmission
  • 相关文献

参考文献4

二级参考文献51

  • 1谢顺平,都金康,王腊春,顾国琴.基于游程编码的GIS栅格数据矢量化方法[J].测绘学报,2004,33(4):323-327. 被引量:33
  • 2吴正升,宋玮,王秀莲.基于2维行程的栅格数据快速动态压缩算法[J].测绘科学技术学报,2007,24(3):207-209. 被引量:2
  • 3刘云浩.物联网导论[M].北京:科学出版社,2011. 被引量:51
  • 4刘云浩.群智感知计算[J].中国计算机学会通讯,2012,8(10):38-41. 被引量:20
  • 5刘云浩.群智感知计算[OL]. [2013-08-10]. http://www.cse. ust. hk/.Iiu/Crowd2012. pdf. 被引量:1
  • 6Burke J A, Estrin D, Hansen M, et al. Participatory sensing[C] //Proceedings of Workshop on World Sensor Web: MobileDevice Centric Sensor Networks and Applications. NewYork: ACM Press, 2006 = 117-134. 被引量:1
  • 7Maisonneuve N,Stevens M, Niessen M E, et al. NoiseTube:measuring and mapping noise pollution with mobile phones[C] //Proceedings of the 4th International ICSC Symposium:Information Technologies in Environmental Engineering.Heidelberg: Springer, 2009 : 215-228. 被引量:1
  • 8Li Z,Zhu Y M,Zhu H Z,et al. Compressive sensingapproach to urban traffic sensing [C] //Proceedings of the 31stIEEE International Conference on Distributed ComputingSystems. Los Alamitos: IEEE Computer Society Press,2011: 889-898. 被引量:1
  • 9D,Hondt E,Stevens M, Jacobs A. Participatory noisemapping works! an evaluation of participatory sensing as analternative to standard techniques for environmentalmonitoring [J]. Pervasive and Mobile Computing, 2013,9(5): 681-694. 被引量:1
  • 10Candes E J, Romberg J, Tao T. Robust uncertaintyprinciples: exact signal reconstruction from highly incompletefrequency information [J]. IEEE Transactions on InformationTheory, 2006, 52(2): 489-509. 被引量:1

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部