期刊文献+

基于最小熵的故障诊断算法

Fault Diagnosis Technology Based on Minimum Entropy
原文传递
导出
摘要 针对提升故障诊断的准确度问题,提出一种基于最小熵的故障诊断算法.首先,依据节点故障概率和各种噪声的发生概率计算一个可疑节点门限值;其次,计算各个节点对于探测结果的信息增益,与门限值对比,将高于门限值的节点视为可疑节点,存入可疑节点集合;最后,对可疑节点集合进行排序,将最小熵对应的节点视为故障节点,并经过仿真实验验证了该算法的有效性. How to diagnose the fault of network is one of the problems in electric power data network.Currently,one of main factors that affect the accuracy of fault diagnosis in power integrated data network is the noise. However,there is almost no mention on the fault diagnosis method in the scheme,because it is difficult to improve the accuracy of fault diagnosis. A new fault diagnosis technique based on minimum entropy was proposed. Firstly,the information gain of each node is calculated according to the probability of node failure probability and the occurrence probability of each node. Then,the nodes are considered as suspicious nodes. Finally,the nodes are considered as nodes.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2016年第B06期10-13,共4页 Journal of Beijing University of Posts and Telecommunications
基金 国家电网公司科技项目
关键词 电力综合数据网 噪声 故障诊断 electric power data network noise entropy fault diagnosis
  • 相关文献

参考文献5

二级参考文献63

  • 1宋文重.浅析网络故障的诊断与解决方法[J].硅谷,2008,1(5). 被引量:4
  • 2霍扬,龚俭.计算机网络故障分析及维护研究[J].硅谷,2008(7):31-31. 被引量:31
  • 3张祖明.人工智能的前沿内容—专家系统的发展综述[J].北京印刷学院学报,1995,3(1):36-43. 被引量:3
  • 4Coper G F. The computational complexity of probabilistic inference using Bayesian belief networks[J].Artificial Intelligence, 1990, 42 (2-3) : 393-405. 被引量:1
  • 5Poole D. Average-case analysis of a search algorithm for estimating prior and posterior probabilities in Bayesian networks with extreme probabilities [A].Proc 13th Int J Conf on Artificial Intelligence [C ].France, 1993. 606-612. 被引量:1
  • 6Skaanning C,Jensen F V,Kjaerulff U. Printer troubleshooting using Bayesian networks [A]. Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE) 2000[C]. New Orleans,2000. 101-108. 被引量:1
  • 7Stephenson T A. An introduction to Bayesian network theory and usage[R]. Switzerland: IDIAP-RR 00-03,Dale Molle Institute, 2000. 被引量:1
  • 8Lepar V, Shenoy P P. A comparison of lauritzen and spiegelhalter, hugin and sharer and shenoy architectures for computing marginals of probability distributions [A]. The Proc of the 14th Conf on Uncertainty in Artificial Intelligence [ C ]. San Francisco: Morgan Kaufmann Publishers, 1998. 328-337. 被引量:1
  • 9Bresnick T A, Buede D M, Tatman J A. Introduction to Bayesian networks[A]. The 66th MORS Symposium[C]. California: Naval Postgraduate School Monterey,1998.23-25. 被引量:1
  • 10Breese J S, Heckerman D. Decision-theoretic troubleshooting: A framework for repair and experiment[A].Proc 12th Conf on Uncertainty in Artificial Intelligence[C]. San Praneiseo: Morgan Kaufmann Publishers,1996. 124-132. 被引量:1

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部