期刊文献+

一种基于算术编码的文本数据压缩算法 被引量:5

A Novel Algorithm for Text Data Compression Based on Arithmetic Codec
下载PDF
导出
摘要 提出了一种基于算术编码的文本数据压缩算法,将扫描产生的偏移量、匹配数据长度等全局优化问题转化为局部优化问题,并从Glomb编码思路出发,推导出一种参数选择算法;对LZ77算法进行修正,提出一种预测编码方法,获得预测参数。对预测参数、偏移量、数据匹配长度、保留文本数据使用MQ算术编码器进行编码,针对不同类型数据,设计出不同的编码算法和相应的上下文算法。对算法进行仿真,并与Winzip、Win Rar压缩效率进行比较,结果表明对纯文本数据、Word文档数据、C语言程序代码,图像数据等,该压缩算法优于Winzip;在纯文本数据、Word文档数据、C语言程序代码压缩方面与Win Rar相当或者略好,但在图像压缩方面的性能与Win Rar相比略有不足。 A novel algorithm for text data compression is proposed based on arithmetic codec. The global parameters optimization is converted into the local parameter optimization, then Glomb code principle is used to solve the local optimization, and a parameter choice method is derived. The LZ77 scanning algorithm is improved in which a prediction code is proposed, and the prediction data is preserved. The parameters such as prediction data, offset, match data length and preserved text data are loaded into MQ codec in which the data can be compressed. To improve the compression efficiency, the corresponding compression algorithms and the context design algorithm are proposed. The proposed algorithm for text data compression is simulated and compared with Winzip and WinRAR. The results show that our compression algorithm has an advantage in compression effect over the Winzip for the data such as texts, word documents, C language program codes and images. Compared with WinRar, our algorithm achieved almost the same compression results for texts, word documents, C language program codes except images.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2016年第6期929-933,共5页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61571354)
关键词 算术编码 参数优化 预测编码 文本数据压缩 arithmetic code parameters optimization predict code text data compression
  • 相关文献

参考文献5

二级参考文献69

  • 1安晓东,陈静.图像压缩方法综述[J].电脑开发与应用,2006,19(12):24-26. 被引量:7
  • 2Enrico Maglia, David Taubmanb. Image compression practices and standards for geospatial information systems [ C ]//Proceedings of the IEEE International, In: Geoscience and Remote Sensing Symposium (IGARSS'03). Toulouse, France: IEEE Press, 2003: 654- 656. 被引量:1
  • 3Chen Chaur-Chin. On the selection of image compression algorithms [ C]//Proceedings of the 14th IEEE International Conference on Pattern Recognition, Brisbane, Australia, IEEE Press, 1998, 2: 1500-1504. 被引量:1
  • 4Gaede V, Gtinther O. Multidimensional access methods [ J]. ACM Computing Surveys, 1998, 30(2) : 170-231. 被引量:1
  • 5Khuri S, Hsu H C. Interactive packages for learning image compression algorithms [ C ]//Proceedings of the 5th Annual Conference on Innovation and Technology in Computer Science Education. New York, NY, USA:ACM, 2000: 73-76. 被引量:1
  • 6Liang J Y, Chen C S, Huang C H, et al, Lossless compression of medical images using hilbert space-filling curves [ J]. Computerized Medical Imaging and Graphics, 2008, 32 ( 3 ) : 174-182. 被引量:1
  • 7Ng K S, Cheng L M . Image compression system using data reordering technique [ J]. Electronics Letters, 2003, 39 (14) : 1046-1047. 被引量:1
  • 8Slobodan Vucetic. A fast algorithm for lossless compression of data tables by reordering [ C ]//Proceedings of the Data Compression IEEE Conference (DCC'06). Snowbird, UT, USA, IEEE Computer Society, 2006: 469-469. 被引量:1
  • 9Jagadish H V. Linear clustering of objects with multiple attributes [ C]//Proceedings of ACM SIGMOD International Conference on Management of Data. Atlantic City, New Jersey, USA: ACM Press, 1990: 332-342. 被引量:1
  • 10Huffman,D.A.A Method for the Construction of Minimum-Redundancy Codes[C]//Proc.IRE 40,9(Sept.),1952:1098-1101. 被引量:1

共引文献27

同被引文献30

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部