摘要
电力系统运行过程中,电网电压通常存在不平衡及畸变,而通过采样有时会引入直流分量,这对精确锁相将产生不利影响。针对这种情况,引入三阶广义积分器(TOGI)滤波解耦结构,并构建锁相环。分析了三阶广义积分器的正交信号发生功能,利用矩阵变换推导其等效结构,证明了该结构可将电压信号中的直流分量和高频分量明显滤除。将等效环节嵌入锁相环,获得αβ坐标系下的电压正序分量,并分析了锁相环结构和相应参数。最后,在电网电压信号包含直流分量、畸变、跳变的情况下进行仿真,仿真结果表明基于三阶广义积分的锁相环设计能够快速实现精确锁相。
During the operation of power system, the voltage of the power grid is usually unbalanced and distorted, meanwhile the sampling signal may conclude DC component, which have a negative effect on the precision phase lock. Considering this situation, this paper introduces third-order general-integrator (TOGI) filter decoupling structure, and constructs a phase-locked loop. The function of the orthogonal signal in TOGI is analyzed, and the transformation matrix is derived to obtain the equivalent structure. It is proved that the structure can filter out the DC component and high frequency component obviously. Equivalent link is embedded in the phase locked loop (PLL) to get positive sequence voltage component in aft coordinates, and the phase structure and the corresponding parameter are analyzed. In the end, simulation is carried out in the case of DC component, distortion and jump in the voltage .signal. The simulation results show that the design of phase locked loop based on the TOGI can realize the phase lock precisely and quickly.
出处
《电力系统保护与控制》
EI
CSCD
北大核心
2016年第23期184-189,共6页
Power System Protection and Control
关键词
直流分量
畸变
三阶广义积分
滤波
锁相环
DC component
distortion
third-order general-integrator
filter
phase locked loop