期刊文献+

具有对偶知识的文化算法 被引量:3

Search on Cultural Algorithm with Dual Knowledge
下载PDF
导出
摘要 传统文化算法的知识对于进化过程的影响是统一进行的,而知识的趋同性导致算法易早熟收敛于局部最优解.为此,提出一种新的由当前种群最优个体及其所在区域,以及当前个体共同确定的对偶知识.当对偶知识指导个体进化时,不同个体的进化方向由相对应的对偶知识所确定.对复杂函数进行了测试,所得数据表明该算法有良好的全局收敛能力及解决高维优化问题的能力. The influence of knowledge on the evolution process in traditional cultural al- gorithms is unified. Evolving to the same direction may lead to premature convergence. A new knowledge named dual knowledge determined by situational knowledge, normative knowledge and the current individual is proposed. When dual knowledge conducts individual evolution, the direction of different individual is decided by the individual dual knowledge. Simulation of complicated functions is performed. The results indicate that this algorithm has abilities of global convergence and good performance in solving highdimensional optimization problems.
作者 黎明 江乐旗 陈昊 LIMing JIANG Le-qi CHEN Hao(School of Information Engineering, Nanchang Hangkong University, Nanchang 330063, Chin)
出处 《应用科学学报》 CAS CSCD 北大核心 2016年第6期754-767,共14页 Journal of Applied Sciences
基金 国家自然科学基金(No.61262019 No.61202112 No.61440049)资助
关键词 文化算法 对偶知识 影响策略 cultural algorithm, dual knowledge, influence strategy
  • 相关文献

参考文献4

二级参考文献65

  • 1高丽丽,刘弘,李同喜.基于模式学习的文化遗传算法研究[J].计算机工程与应用,2007,43(22):38-40. 被引量:4
  • 2ANDRE J,SIARRY P,DOGNON T.An improvement of the standard genetic algorithm fighting premature convergence in continuous optimization[J].Advance in Engineering Software,2001,32(1):49-60. 被引量:1
  • 3HRSTKA O,KUCEROVE A.Improvement of real coded genetic algorithm based on differential operators preventing premature convergence[J].Advance in Engineering Software,2004,35(3/4):237-246. 被引量:1
  • 4TIZHOOSH H R.Opposition-based learning:a new scheme for machine intelligence[C] //International,Conference on Computational Intelligence for Modelling,Control and Automation,and International Conference on Intelligent Agents,Web Technologies and Internet Commerce,Vienna,Austria,2005:695-701. 被引量:1
  • 5RAHNAMAYAN S,TIZHOOSH H R,SALAMA M M A.Opposition versus randomness in soft computing techniques[J].Applied Soft Computing,2008,8(2):906-918. 被引量:1
  • 6TIZHOOSH H R.Opposition-based reinforcement learning[J].Journal of Advanced Computational Intelligence and Intelligent Informtics,2006,10(4):578-585. 被引量:1
  • 7LIN Zhiyi,WANG Lingllng.A new opposition-based compact genetic algorithm with fluctuation[J].Journal of Computational Information Systems,2010,6(3):897-904. 被引量:1
  • 8RAHNAMAYAN S,TIZHOOSH H R,SALAMA M M A.Opposition-based differential evolution algorithms[C] //IEEE Congress on Evolutionary Computation,Vancouver,Canada,2006:2010-2017. 被引量:1
  • 9RAHNAMAYAN S,TIZHOOSH H R,SALAMA M M A.Opposition-based differential evolution[J].IEEE Transactions on Evolutionary Computation,2008,12(1):64-79. 被引量:1
  • 10VENTRESCA M,TIZHOOSH H R.Improving the convergence of backpropagation by opposite transfer functions[C] //International Joint Conference on Neural Networks,Vancouver,Canada,2006:4777-4784. 被引量:1

共引文献26

同被引文献11

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部