期刊文献+

基于低空风预测模型的救援航迹修正规划方法 被引量:2

Amendment Method for Planning Rescue Trajectory Based on Low-Level Wind Forecasting Model
下载PDF
导出
摘要 针对低空救援航迹易受到侧风影响难以获得准确的航迹规划路径问题,采用数据融合方法预测低空风,修正航空器的低空规划航迹.首先,将飞行区域内的国际交换站作为观测点,通过应用基于无迹卡尔曼滤波(UKF)的数值气象预报释用技术,将观测点的风速、风向记录数据与预报值进行融合,建立低空风预测模型;其次,利用该模型,校正预报数据的系统误差,得出修正的风预测值;最后,结合航空器的爬升率、巡航速度等性能参数与所经航路点的风速、风向信息,依据速度矢量合成原理,修正各航路点的过点时刻.仿真实验表明,与传统的卡尔曼滤波预测方法相比,由UKF方法预测得到的风速、风向RM_SE分别减少了12.88%与17.50%,对初始规划航迹的修正更为精确. Considering that an accurate rescue trajectory is hard to obtain in low altitude and crosswind conditions, the data fusion technique was employed to predict the wind condition at low altitude and, accordingly, to amend the low-trajectory rescue trajectory plan for the aircraft. Taking the international exchange stations within the flying area as the observation points, the numerical weather prediction and interpretation technology based on the unscented Kalman filtering (UKF) was used to build a low-level wind forecasting model by combing the record data sets of wind velocities and directions from the observation points and prediction data sets. Then, the model was used to correct the system error in the original prediction data and produce the modified prediction values about the wind. Finally, according to the principle of velocity triangle, performance parameters such as the rate of climb, cruise speed of the aircraft were combined to estimate the passing time of aircraft at each waypoint. Simulation shows that compared with the results obtained by the traditional Kalman filtering, the root mean square errors of wind speed and wind direction by UKF are decreased by 12.88% and 12.88% ; and the initially planned trajectory can be modified more accurately.
出处 《西南交通大学学报》 EI CSCD 北大核心 2016年第6期1258-1264,共7页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(U1233101 71271113 U1633119) 中央高校基本科研业务费专项基金资助项目(NS2016062)
关键词 空中交通管制 低空救援 航迹 气象预测 无迹卡尔曼滤波 air traffic control low altitude rescue trajectory weather forecasting unscentedKalman filtering
  • 相关文献

参考文献3

二级参考文献43

  • 1陈继东,孟小峰,赖彩凤.基于道路网络的对象聚类[J].软件学报,2007,18(2):332-344. 被引量:29
  • 2PERNG C S, WANG H, ZHANG S R, et al. Landmarks: a new model for similarity-based pattern querying in time series databases[ C]//Proceedings of the 16th International Conference on Data Engineering, [S.l. ] : IEEE, 2000: 33-42. 被引量:1
  • 3CHEN L, ZSU M T, ORIA V. Robust and fast similarity search for moving object trajectories[C]// Proceedings of the 2005 ACM S1GMOD International Conference on Management of Data. New York: ACM, 2005 : 491-502. 被引量:1
  • 4REHM F. Clustering of flight tracks[ C]//6th AIAA Infotech @ Aerospace 2010. Atlanta: AIAA, 2010: AIAA-2010-3412. 被引量:1
  • 5GARIEE M, SRIVASTAVA A, FERON E. Trajectory clustering and an application to airspace monitoring[ J]. Intelligent Transportation Systems, 2011, 12 (4) : 1511-1524. 被引量:1
  • 6KLEIN J, BITrlHN P, LEDOCHOWITSCH P, et al. Grid-based spectral fiber clustering[C]// Medical Imaging. International Society for Optics and Photonics. San Diego : SPIE, 2007 : 65091E-1- 65091E-10. 被引量:1
  • 7NG A Y, JORDAN M I, WEISS Y. On spectral clustering : analysis and an algorithm [ C ] // Proceedings of Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2001: 849 -856. 被引量:1
  • 8Von LUXBURG U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17 (4) : 395-416. 被引量:1
  • 9BELKIN M, NIYOG1 P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373-1396. 被引量:1
  • 10LEDL T. Kernel density estimation: theory and application in discriminant analysis[J]. Austrian Journal of Statistics, 2004, 33 (3) : 267-279. 被引量:1

共引文献183

同被引文献26

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部