期刊文献+

HEV传动系统多目标优化研究 被引量:2

Research on Multi-objectives Optimization of HEV Transmission System
下载PDF
导出
摘要 针对当前混合动力研究主要集中在燃油经济性等单目标上,对多目标研究较少的情况,提出一种基于非支配排序的多目标优化算法(multi-objective evolutionary algorithm,MOEA)。以装备5档手动变速器的并联混合动力汽车为对象,研究传动系速比匹配对燃油经济性与排放性的影响。结果表明:相比优化前,优化后燃油经济性提升了3.09%,排放性综合指标提升17.92%;得到的Pareto解集具有良好的分布性与收敛性,不仅优化了目标,更体现出目标间的冲突情况,说明提出的多目标优化算法能够体现混合动力多目标优化的本质;对解集进一步挖掘,理论上能搜寻到的全局最优解集,为混合动力多目标权衡控制策略提供了理想的控制基础。 At present HEV (Hybrid Electric Vehicle) research mainly focuses on the single object such as fuel economy, but little for multi-objectives. Taking the parallel HEV with 5 gears manual transmission as the research object, a multi-objectives evolutionary algorithm (MOEA) based on non-dominated sorting is proposed, which can analyze the influence of transmission ratio match on the fuel economy and emissions. The simulation results show that fuel economy increases by 3.09% and the emission performance comprehensive index increases by 17.92% compared with the pre-optimization results, which improves the effect of energy conservation. Moreover, the obtained Pareto solution sets have good distribution and convergence, which not only optimizes the objectives, but also reflects the conflict conditions among the objectives. The results show that the proposed MOEA can embody the essence of multi-objectives optimization for HEV. The overall optimal solution set, which can be searched theoretically, provides the ideal control basis for HEV multi-objectives trade-off control strategy.
出处 《机械科学与技术》 CSCD 北大核心 2016年第11期1751-1755,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(51305473) 中国博士后科学基金项目(2014M552317) 重庆市科委基础与前沿研究计划项目(cstc2013jcyj A60007) 重庆市教委科学技术研究项目(KJ120421) 重庆市博士后研究人员科研项目(xm2014032)资助
关键词 混合动力 传动系统 多目标优化 MOEA multi-objective optimization evolutionary algorithms Hybrid electric energy conservation fuels gears
  • 相关文献

参考文献2

二级参考文献26

共引文献21

同被引文献26

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部