期刊文献+

基于微分对策理论的两车碰撞问题 被引量:3

Collision problem of two cars based on differential game theory
下载PDF
导出
摘要 对2辆自主无人车碰撞问题的定性微分对策进行了研究,建立了碰撞问题的数学模型,用微分对策的方法推导出追逃双方为了达到各自目的所应采取的最优控制策略,证明了完成捕获的充分条件,并且通过计算界栅确定了对策状态空间的捕获区和躲避区,说明了微分对策方法在处理两车碰撞问题上的有效性。所涉及的内容还可应用于火力分配、劳资谈判、资源与污染等领域。 Qualitative differential game of collision problem of two unmanned autonomous cars is studied. The mathematical model of collision problem is established,and the differential game method is adopted to derive the optimal control strategy of both sides in pursuit-evasion game in order to achieve their aims. The sufficient condition for the capture is proved. The region leads to capture and the region leads to evasion in game space are confirmed though calculating the barrier. The efficiency of the differential game method in dealing with the two-car collision problem is indicated. The results can also be used in the field of fire distribution,labor management negotiations,resources and pollution,etc.
出处 《北京信息科技大学学报(自然科学版)》 2016年第5期68-72,共5页 Journal of Beijing Information Science and Technology University
基金 国家自然科学基金资助项目(61261160497 61471046) 高动态导航技术北京市重点实验室开放课题
关键词 碰撞问题 微分对策 界栅 捕获 collision problem differential game barrier capture
  • 相关文献

参考文献8

  • 1谭拂晓,刘德荣,关新平,罗斌.基于微分对策理论的非线性控制回顾与展望[J].自动化学报,2014,40(1):1-15. 被引量:12
  • 2Isaacs R.Differential games:SIAM series in applied mathematics[M].New York:John Wiley and Sons,1965. 被引量:1
  • 3WU Tian-jiao.On a collision problem[J].Mathematics Mechanization Research Preprints,1992,3(7):96-104. 被引量:1
  • 4Ioannis Exarchos1,Panagiotis Tsiotras.An asymmetric version of the two car pursuit-evasion game[C].Los Angeles,IEEE Conference on Decision and Control,2014:4272-4277. 被引量:1
  • 5侯春望,李树荣.机器人碰撞问题中的微分对策方法[J].石油大学学报(自然科学版),2005,29(5):135-138. 被引量:5
  • 6是兆雄.微分对策及其应用[J].系统工程,1984,2(4):88-96. 被引量:1
  • 7王帅,张云生,王彬.无线传感器网络中机器人追踪碰撞问题的仿真研究[C].昆明:中国控制会议,2008:190-193. 被引量:1
  • 8Mylvaganam T,Sassano M,Astolfi A.A constructive differential game approach to collision avoidance in multi-agent systems[C].Portland:American Control Conference,2014:311-316. 被引量:1

二级参考文献88

  • 1COLLINS G E, HONG H. Partial cylindrical algebraic decomposition for quantifier elimination[J]. Journal of Symbolic Computation, 1991,12(3):299-328. 被引量:1
  • 2WU Wen-tsun. On problems involving inequalities[J]. Mathematics Mechanization Research Preprints, 1992,3(7):1-13. 被引量:1
  • 3WU Tian-jiao. On a collision problem[J]. Mathematics Mechanization Research Preprints, 1992,3(7):96-104. 被引量:1
  • 4Isaacs R. Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization. New York: Dover Publications, 1999. 被引量:1
  • 5Issacs R. Differential Games: SIAM Series in Applied Mathematics. New York: John Wiley and Sons, 1965. 被引量:1
  • 6Friedman A. Differential Games: Pure and Applied Mathematics Series. New York: Wiley Interscience, 1971. 被引量:1
  • 7Friedman A. Differential Games. Rhode Island: American Mathematical Society, 1974. 被引量:1
  • 8Nash J. Non-cooperative games. Annals of Mathematics, 1951, 54(3): 286-295. 被引量:1
  • 9Basar T, Olsder G J. Dynamic Noncooperative Game Theory (2nd Edition). New York: SIAM, Society for Industrial and Applied Mathematics, 1999. 被引量:1
  • 10Basar T, Bernhard P. H∞-Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach (2nd Edition). Boston: Birkh?user Boston Inc., 2008. 被引量:1

共引文献14

同被引文献18

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部