期刊文献+

基于自适应核回归和代数重建法的低剂量CT图像重建

Low-dose CT Image Reconstruction Based on Adaptive Kernel Regression Method and Algebraic Reconstruction Technique
下载PDF
导出
摘要 针对稀疏角度投影数据CT图像重建问题,TV-ART算法将图像的梯度稀疏先验知识引入代数重建法(ART)中,对分段平滑的图像具有较好的重建效果。但是,该算法在边界重建时会产生阶梯效应,影响重建质量。因此,本文提出自适应核回归函数结合代数重建法的重建算法(LAKR-ART),不仅在边界重建时不会产生阶梯效应,而且对细节纹理重建具有更好的重建效果。最后对shepp-logan标准CT图像和实际CT头颅图像进行仿真实验,并与ART、TV-ART算法进行比较,实验结果表明本文算法有效。 To the problem of sparse angular projection data of CT image reconstruction, TV-ART algorithm introduces the gradient sparse prior knowledge of image to algebraic reconstruction, and the local smooth image gets a better reconstruction effect. How- ever, the algorithm generates step effect when the borders are reconstructed, affecting the quality of the reconstruction. Therefore, this paper proposes an adaptive kernel regression function combined with Algebraic Reconstruction Technique reconstruction algo- rithm (LAKR-ART), it does not produce the step effect on the border reconstruction, and has a better effect to detail reconstruc- tion. Finally we use the shepp-logan CT image and the actual CT image to make the simulation experiment, and compare with ART and TV-ART algorithm. The experimental results show the algorithm is of effectiveness.
作者 钟志威
出处 《计算机与现代化》 2016年第11期38-42,共5页 Computer and Modernization
关键词 图像重建 代数重建法 不完全投影 压缩传感 自适应核回归 image reconstruction algebraic reconstruction technique incomplete projection compressed sensing adaptive ker-nel regression
  • 相关文献

参考文献18

  • 1庄天戈..CT原理与算法[M],1992.
  • 2高上凯编著..医学成像系统[M].北京:清华大学出版社,2000:177.
  • 3Donoho D L. Compressed sensing [ J ]. IEEE Transactions on Information Theory, 2006,52 (4) : 1289-1306. 被引量:1
  • 4Candes E J, Romberg J, Tao T. Robust uncertainty princi- ples: Exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transactions on Informa- tion Theory, 2006,52(2) :489-509. 被引量:1
  • 5Sidky E Y, Kao Chien-Min, Pan Xiaochuan. Effect of the data constraint on few-view, fan-beam CT image recon- struction by TV minimization [ J ]. IEEE Nuclear Science Symposium Conference Record, 2006,4:2296-2298. 被引量:1
  • 6Ritschl L, Bergner F, Fleischmann C, et al. Improved to- tal variation-based CT image reconstruction applied to clini- cal data [ J]. Physics in Medicine & Biology, 2011,56 (6) :1545-1561. 被引量:1
  • 7Yu Hcngyong, Wang Ge. A soft-threshold filtering approach for reconstruction from a limited number of projections [ J ]. Physics in Medicine & Biology, 2010,55(13) :3905-3916. 被引量:1
  • 8Yu Hengyong, Wang Ge. Compressed sensing based interi- or tomography[ J ]. Physics in Medicine & Biology, 2009, 54(9) :2791-2805. 被引量:1
  • 9Chen Guang-hong, Tang Jie, Leng Shuai. Prior image con- strained compressed sensing (PICCS) : A method to accu- rately reconstruct dynamic CT images from highly undersam- pied projection data sets [ J]. Medical Physics, 2008,35 (2) :660-663. 被引量:1
  • 10Sidky E Y, Pan Xiaochuan. Image reconstruction in circu- lar cone-beam computed tomography by constrained, total- variation minimization [ J ]. Physics in Medicine & Biology, 2008,53 (17) :4777-4807. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部