期刊文献+

改进FP-growth算法在气象预报中的应用 被引量:5

Application of an Improve FP-growth Algorithm in Meteorological Forecast
下载PDF
导出
摘要 针对现在全球极端天气频发的现状,天气预报用来及时发现灾害天气的出现显得尤为重要.随着数据挖掘技术的迅速发展和广泛应用,采用了改进FP-growth算法挖掘出各种气象因子之间可能存在的关联,从而发现气象特点,对近期天气气象做出预报.经过仿真实验验证,改进后的算法在天气预报准确率有了明显的提高. Aiming at the problem of the global frequent extreme weather conditions, it is more important to discover the appearance of the disaster weather. With the rapid development and wide application of data mining technology. In this paper, it uses improved FP-growth algorithm to mining the possible correlation between various meteorological factors, so as to find the weather characteristics and forecast the near future weather condition. The simulation results show that the improved algorithm has a significant improvement in the accuracy of weather forecast.
作者 刘娟 宋安军
出处 《计算机系统应用》 2016年第10期199-204,共6页 Computer Systems & Applications
基金 国家自然科学基金(61502298)
关键词 天气预报 气象因子 数据挖掘 关联规则 FP-GROWTH算法 weather forecast meteorological factor data mining association rules FP-growth algorithm
  • 相关文献

参考文献4

二级参考文献21

  • 1谢秋华.Web文本挖掘的相关技术问题探讨[J].长春理工大学学报(自然科学版),2010,33(7):55-56. 被引量:3
  • 2胡吉明,鲜学丰.挖掘关联规则中Apriori算法的研究与改进[J].计算机技术与发展,2006,16(4):99-101. 被引量:59
  • 3Chen M S,Han J W,Yu P S. Data Mining: An Overview from a Database Perspective[ J]. IEEE Transactions on Knowledge and Data Engineering, 1996,8 (6) : 866 - 883. 被引量:1
  • 4Han J W,Kamber M. Data Mining Concepts and Techniques[ M]. Beijing: Higher Education Press,2001. 被引量:1
  • 5Agrawal R, Srikant R. Fast algorithms for mining association rules in large databases [ C ]. Proceedings of the 20th International Conference on Very Large Data Bases, September 1994. 被引量:1
  • 6Han E H, Karypis G, Kumar V. Scalable parallel data mining for association rules[ C ]. ACM SIGMOD International Conference on Management of Data, May, 1997. 被引量:1
  • 7Agrawa! R, Imielinski T, Swami A. Mining association rules between. sets of items in large databases[ C ]. Proceedings of the ACM SIGMOD International Conference on Management of Data ; May, 1993. 被引量:1
  • 8Wur S Y, Leu Y H. An effective Boolean algorithm for mining association rules in large databases [ C ]. Database Systems for Advanced Applications, 1999 : Proceedings, 6th International Conference, April, 1999:19 -21. 被引量:1
  • 9Li S, Hong S, Ling C. New algorithms for efficient mining of association rules [ C]. Proceedings of the 7^th Symposium on the Frontiers of Massively Parallel Computation, February, 1999. 被引量:1
  • 10Park J S,Chen M S,Yu P S. Using a hash-based method with transaction trimming for mining association rules[ J]. Knowledge and Data Engineering, IEEE Transactions 1997,9(5 ) : 813 - 825. 被引量:1

共引文献141

同被引文献40

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部