期刊文献+

语义推荐算法研究综述 被引量:13

Survey of Semantics-Based Recommendation Algorithms
下载PDF
导出
摘要 近年来,语义推荐技术已成为信息服务领域的一个研究热点和重点.与传统的推荐算法相比,语义推荐算法在实时性、鲁棒性和推荐质量等方面具有显著的优势.针对语义推荐算法的国内外研究现状、进展,从四个角度进行归纳和总结,即基于语义的内容推荐算法、基于语义的协同过滤推荐算法、基于语义的混合推荐算法以及基于语义的社会化推荐算法,旨在尽可能全面地对语义推荐算法进行细致的介绍与分析,为相关研究人员提供有价值的学术参考.最后,立足于研究现状的分析与把握,对当前语义推荐算法所面临的挑战与发展趋势进行了展望. Semantics-based recommendation technology has recently received a lot of attention in information services community. Compared with traditional recommendation algorithms,semantics-based recommendation algorithms have the marked advantages in the aspects of real-timing,robustness and recommendation quality. From the status and progress of domestic and foreign research,we summarize the following four aspects: semantics-based content recommendation algorithms,semantics-based collaborative filtering recommendation algorithms,semantics-based hybrid recommendation algorithms,and semantics-based social recommendation algorithms. And this paper is expected to provide a worthwhile reference for relevant researchers by detailedly analyzing semantics-based recommendation algorithms. Finally,we showreaders the challenges and future research directions in this field.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第9期2262-2275,共14页 Acta Electronica Sinica
基金 国家自然科学基金(No.61272268) 上海市青年科技启明星计划(No.15QA1403900) 教育部新世纪优秀人才支持计划(No.NCET-12-0413) 国家973课题(No.2014CB340404) 霍英东基金应用类课题(No.142002) 同济大学中央高校基本科研业务费专项资金
关键词 语义 推荐算法 内容推荐 协同过滤推荐 混合推荐 社会化推荐 semantics recommendation algorithm content recommendation collaborative filtering recommendation hybrid recommendation social recommendation
  • 相关文献

参考文献4

二级参考文献34

  • 1[1]Varshney P K. Multisensor data fusion [J]. J of Electronics and Communication Engineering, 1997:245-253. 被引量:1
  • 2[2]John M R. Fusion of multisensor data[J]. The Int J of Robotics Research, 1988, 7(6) :78-96. 被引量:1
  • 3[3]Rao B S Y. A fully decentralized multisensor system for tracking and surveillance [J]. The Int J of Robotics Research, 1988, 12 (1): 20-45. 被引量:1
  • 4[4]Luo R C, Lin M, Scherp P C. Dynamic multisensor data fusion system for intelligent robots[J]. IEEE J of Robotics and Automation, 1988, 4(4) :386-396. 被引量:1
  • 5[5]Bloch I. Information combination operators for data fusion: A comparative review with classification [J].IEEE Trans on System Man and Cybernitic: Part A,1996, 26(1):52-67. 被引量:1
  • 6J Breese, D Hecherman, C Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In: Proc of the 14th Conf on Uncertainty in Artificial Intelligence (UAI98) . San Francisco,CA: Morgan Kaufmann, 1998. 43~52 被引量:1
  • 7B Sarwar, G Karypis, J Konstan, et al. Item-based collaborative filtering recommendation algorithms. In: Proc of the 10th Int'l World Wide Web Conf. New York: ACM Press, 2001. 285~295 被引量:1
  • 8A Dempster, N Laird, D Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977, 39(1): 1~38 被引量:1
  • 9B Thiesson, C Meek, D Chickering, et al. Learning mixture of DAG models. Microsoft Research, Tech Rep: MSR-TR-97-30,1997 被引量:1
  • 10B Sarwar, G Karypis, J Konstan, et al. Analysis of recommendation algorithms for E-commerce. In: Proc of the 2nd ACM Conf on Electronic Commerce. New York: ACM Press,2000. 158~167 被引量:1

共引文献143

同被引文献138

引证文献13

二级引证文献181

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部