期刊文献+

基于多核学习的静态图像人体行为识别方法 被引量:4

Action Recognition in Still Image Based on Multiple Kernel Learning
下载PDF
导出
摘要 提出一种基于广义性多核学习的静态图像人体行为识别方法。从图像中提取基于边缘的梯度方向直方图和基于稠密采样的尺度不变特征描述子,并使用空间金字塔模型加入粗略空间信息;运用直方图内交核函数计算金字塔模型各层核矩阵,通过广义性多核学习方法求解各个核矩阵权重,以线性组合方式得到最优核矩阵;最后利用多核学习决策函数进行行为识别。Willow-actions数据集实验结果表明,本文方法比其他几种方法更加有效。 A novel action recognition method based on general multiple kernel learning is proposed.Firstly,histogram of oriented gradients(HOG)based on edge of image and scale invariant feature transform(SIFT)based on dense sampling are extracted.Furthermore,spatial pyramid model is considered to obtain coarse spatial information.Then,the kernel matrix of each level in spatial model is computed by histogram intersection kernel function.With general multiple kernel learning,the weights of kernel matrixes are solved and the optimal kernel matrix is achieved by the linear combination of kernel matrixes.Finally,action recognition is realized by the decision function.The obtained impressive result shows that the proposed algorithm is more effective than some common methods in Willow-actions dataset.
出处 《数据采集与处理》 CSCD 北大核心 2016年第5期958-964,共7页 Journal of Data Acquisition and Processing
基金 高等学校博士学科点专项科研基金(20121401120015)资助项目 国家自然科学基金(61201453)资助项目 山西省自然科学基金(2012011014-4)资助项目
关键词 行为识别 广义性多核学习 空间金字塔模型 直方图内交核函数 action recognition general multiple kernel learning spatial pyramid model histogram intersection kernel function
  • 相关文献

参考文献16

  • 1Moeslund T B,Hilton A,Krüger V.A survey of advances in vision-based human motion capture and analysis[J].ComputerVision and Image Understanding,2006,104(2):90-126. 被引量:1
  • 2Wang Y,Jiang H,Drew M S,et al.Unsupervised discovery of action classes[C]∥Computer Vision and Pattern Recognition.New York,USA:IEEE Computer Society Press,2006,2:1654-1661. 被引量:1
  • 3Li Jiali,Li Feifei.What,where and who?Classifying events by scene and object recognition[C]∥11th IEEE InternationalConference on Computer Vision.Rio de Janeiro,Brazil:IEEE Computer Society Press,2007:1-8. 被引量:1
  • 4Yao B,Li F F.Modeling mutual context of object and human pose in human-object interaction activities[C]∥Computer Vi-sion and Pattern Recognition(CVPR).Silvio Savarese:IEEE Computer Society Press,2010:17-24. 被引量:1
  • 5Yao B,Li F F.Grouplet:A structured image representation for recognizing human and object interactions[C]∥ComputerVision and Pattern Recognition(CVPR).Silvio Savarese:IEEE Computer Society Press,2010:9-16. 被引量:1
  • 6Delaitre V,Laptev I,Sivic J.Recognizing human actions in still images:A study of bag-of-features and part-based represen-tations[C]∥BMVC 21st British Machine Vision Conference.Aberystwyth:Springer,2010:1-11. 被引量:1
  • 7Yang W,Wang Y,Mori G.Recognizing human actions from still images with latent poses[C]∥Computer Vision and PatternRecognition(CVPR).Silvio Savarese:IEEE Computer Society Press,2010:2030-2037. 被引量:1
  • 8Varma M,Ray D.Learning the discriminative power-invariance trade-off[C]∥ ICCV 2007.Rio de Janeiro,Brazil:IEEEComputer Society Press,2007:1-8. 被引量:1
  • 9Varma M,Babu B R.More generality in efficient multiple kernel learning[C]∥Proceedings of the 26th Annual InternationalConference on Machine Learning.Montreal,Canada:Cambridge University Press,2009:1065-1072. 被引量:1
  • 10Bosch A,Zisserman A,Muoz X.Image classification using random forests and ferns[C]∥11th IEEE International Confer-ence on Computer Vision.Rio de Janeiro,Brazil:IEEE Computer Society Press,2007:1-8. 被引量:1

二级参考文献21

  • 1程娟,平西建,周冠玮.基于多特征和SVM的文本图像版面分类方法[J].数据采集与处理,2008,23(5):569-574. 被引量:6
  • 2张锦水,何春阳,潘耀忠,李京.基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J].遥感学报,2006,10(1):49-57. 被引量:132
  • 3李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 4Swain M J, Ballard D H. Color indexing[J]. Inter- national Journal of Computer Vision, 1991,7 ( 1 ) : 11- 32. 被引量:1
  • 5Lee Tai Sing. Image representation using 2D gahor wavelets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(10) : 1-13. 被引量:1
  • 6Yang Yi, Shawn N. Bag of visual words and spatial extensions for land-use classification [C]//ACM In- ternational Conference on Advances in Geographic Information Systems. New York, USA..[s. n. ], 2010: 270-279. 被引量:1
  • 7Li Feifei, Perona P. A Bayesian hierarchical model for learning natural scene categories [C]//IEEE In- ternational Conference on Computer Vision and Pat- tern Recognition, San Diego, CA, USA: [s. n. ], 2005 : 524-531. 被引量:1
  • 8Lazebnik S, Schmid C, Ponce J. A maximum entro- py framework for part-based texture and object rec- ognition [C]//IEEE International Cont'erence on Computer Vision and Pattern Recognition. Beijing, China..[s. n. ], 2005..832-838. 被引量:1
  • 9Lowe D G. Distinctive image features from scale-in- variant keypoints[J]. International Journal of Com- puter Vision, 2004,60(2) :91-100. 被引量:1
  • 10Yang Yi,Shawn N. Spatial pyramid co-occurrence for image classification[C]//IEEE International Confer- ence on Computer Vision. Barcelona, Spain[Is. n. ], 2011 .. 1:65-1472. 被引量:1

共引文献16

同被引文献29

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部