期刊文献+

g-C_3N_4光催化材料的第一性原理研究 被引量:5

Research of Photocatalyst g-C_3N_4 Using First Principles
原文传递
导出
摘要 能源短缺和环境恶化是人类社会快速发展面临的重大难题。太阳能作为一种清洁无污染的理想新型能源,具有取之不尽、用之不竭的特点,是实现可持续发展的最佳能源选择。半导体光催化可以直接利用太阳光进行催化反应,得到了广泛关注。作为一种低成本无金属光催化剂,g-C_3N_4具有独特的电子能带结构、优良的化学稳定性和热力学稳定性,在光催化领域如分解水制氢制氧、降解有机污染物、CO2还原、抗菌和有机官能团选择性转换等方面表现出巨大的应用前景。目前g-C_3N_4光催化剂存在着如比表面积小、可见光利用率低、量子产率低和光生载流子易复合等问题,制约了其在光催化领域的应用。因此,提升g-C_3N_4光催化性能是光催化研究领域的重要课题。第一性原理具有半经验方法不可比拟的优势,已成为光催化研究领域计算和模拟的重要基础。基于密度泛函理论的第一性原理在光催化领域的广泛应用,为有效迅速地探求能够改善g-C_3N_4光催化性能的方法提供了明确的研究手段。本文从理论计算的角度综述了近年来在g-C_3N_4改性方面所取得的一些重要研究进展,主要包括元素掺杂、复合和形貌调控等改性手段。本文以gC_3N_4改性光催化剂为研究对象,从电子性质、能带结构、光学性质和缺陷形成能的角度阐述了各种改性手段提高光催化活性的微观机理。最后,在总结前文所述各类改性研究的基础上,对g-C_3N_4改性光催化剂未来的发展趋势作出了展望。 Energy shortage and environmental deterioration are the difficult problems now confronting us in the development of human society. As one of the best and new type energy which is clean, renewable and zeropollution, solar energy is the best choice to achieve sustainable development, because it is an inexhaustible energy source. The issue that semiconductor photocatalysis can use solar light directly to conduct the photocatalytic reaction has aroused widely public concern. As a kind of low cost and non-metal photocatalyst, graphitic carbon nitride ( g-C3N4) shows great application prospects in decomposition of water into hydrogen and oxygen, photocatalytic degradation of organic pollutants, carbon dioxide reduction, antibacterial, selective conversion of organic functional groups, as well as other fields, for its unique electronic band structure, thermal and chemical stability. But at present, g-C3N4 photocatalyst still exists some problems such as small specific surface area, low visible light utilization rate, low light quantum yield, and easy recombination of photogenerated carriers which restrict its application in the field of photocatalysis. Therefore, it has become a key subject in the field of photocatalytic research to improve the photocatalytic activity of g-C3N4 The first principles have the incomparable advantages over semi empirical method, which have become an important basis for the calculation and simulation in the field of photocatalytic research. The wide application of first principles based on density functional theory in the field of photocatalysis provides a clear research means to explore the method to improve the photocatalytic activity of g-C3N4 effectively and quickly. In this review, some important research progress in g-C3N4 modification in recent years is reviewed from the theoretical point of view, including element doping modification, composite modification, morphology control modification and other means of modification. The microscopic mechanism of improved photocatalytic activ
出处 《化学进展》 SCIE CAS CSCD 北大核心 2016年第10期1569-1577,共9页 Progress in Chemistry
基金 国家自然科学基金项目(No.51672081) 河北省杰出青年科学基金项目(No.B2014209304) 河北省自然科学基金重点项目(No.B2016209375) 河北省自然科学基金-钢铁联合基金项目(B2016209348)资助~~
关键词 光催化 g-C3N4 密度泛函理论 第一性原理 photocatalytic g-C3N4 density functional theory first principles
  • 相关文献

参考文献69

  • 1Fujishima A,Honda K.Nature,1972,238:37. 被引量:1
  • 2田蒙奎,上官文峰,欧阳自远,王世杰.光解水制氢半导体光催化材料的研究进展[J].功能材料,2005,36(10):1489-1492. 被引量:19
  • 3Daghrir R,Drogui P,Robert D.Ind.Eng.Chem.Res.,2013,52:3581. 被引量:1
  • 4Wang X C,Maeda K,Thomas A,Takanabe K,Xin G,Carlsson J M,Domen K,Antonietti M.Nat.Mater.,2009,8:76. 被引量:1
  • 5Zhang J S,Chen X F,Takanabe K,Maeda K,Domen K,Epping J D,Fu X Z,Antonietti M,Wang X C.Angew.Chem.Int.Ed.,2010,49:441. 被引量:1
  • 6Cui Y J,Ding Z X,Liu P,Antonietti M,Fu X Z,Wang X C.Phys.Chem.Chem.Phys.,2012,14:1455. 被引量:1
  • 7Thomas A,Fischer A,Goettmann F,Antonietti M,Müller J O,Schl?gl R,Carlsson J M.J.Mater.Chem.,2008,18:4893. 被引量:1
  • 8Xin G,Meng Y L.Journal of Chemistry,2013,2013:1. 被引量:1
  • 9Ji H H,Chang F,Hu X F,Qin W,Shen J W.Chemical Engineering Journal,2013,218:183. 被引量:1
  • 10Li X H,Zhang J S,Chen X F,Fischer A,Thomas A,Antonietti M,Wang X C.Chemistry of Materials,2011,23(19):4344. 被引量:1

二级参考文献74

  • 1Fujishima A,Honda K.[J].Nature,1972,238:37-38. 被引量:1
  • 2Kawai T,Sakata T.[J].Nature,1980,286:474-476. 被引量:1
  • 3Ashokkumar M.[J].Int J Hydrogen Energy,1998,23:427-431. 被引量:1
  • 4Mizoguchi H,Ueda K,Orita M,et al.[J].Materials Research Bulletin,2002, 37:2401-2406. 被引量:1
  • 5Domen K,Kudo A,Onishi T.[J].J Catal,1986,102:92-98. 被引量:1
  • 6Ogura S,Kohno M,Sato K,et al.[J].Appl Surf Sci,1997,121/123:521-524. 被引量:1
  • 7Ogura S,Kohno M,Sato K,et al.[J].J Mater Chem,1994,8:2335-2337. 被引量:1
  • 8Ogura S,Sato K,Inoue K.[J].Phys Chem Chem Phys,2000,2:2449-2454. 被引量:1
  • 9Kudo A,Tanaka A,Domen K,et al.[J].J Catal,1998,111:67-76. 被引量:1
  • 10Kudo A,Kato H,Nakagawa S.[J].J Phys Chem B,2000,104:571-575. 被引量:1

共引文献108

同被引文献37

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部