期刊文献+

基于奇异值分解和变分模态分解的轴承故障特征提取 被引量:44

Fault feature extraction of bearing faults based on singular value decomposition and variational modal decomposition
下载PDF
导出
摘要 为了有效提取轴承故障,提出了基于变分模态分解和奇异值分解降噪的故障特征提取方法。通过对故障信号进行变分模态分解,获得其本征模态函数。基于峭度指标,选择包含故障信息的本征模态函数进行信号重构。利用奇异值分解降噪技术对重构信号进行处理,提高信噪比。最后对降噪信号进行包络解调提取故障特征频率。与常见的故障特征提取方法相比,该方法能有效辨别滚动轴承的典型故障,突出故障特征,提高滚动轴承的故障诊断效果。 In order to extract fault features of rolling bearings effectively,a method based on variational mode decomposition and singular value decomposition was proposed.The Intrinsic Mode Function (IMF)was obtained by variational mode decomposition.The IMF containing fault information was selected to reconstruct the signal according to the index of kurtosis.The singular value decomposition was used to reduce noise and increase the ratio of signal-to-noise. Then the fault features were extracted by using envelope spectrum analysis.Compared with common fault features extraction methods,the proposed method can distinguish typical faults,highlight fault features and improve diagnostic effect.
出处 《振动与冲击》 EI CSCD 北大核心 2016年第22期183-188,共6页 Journal of Vibration and Shock
基金 国家自然科学基金项目(51277074)
关键词 变分模态分解 奇异值分解 滚动轴承 故障特征提取 variational mode decomposition singular value decomposition rolling bearing fault features extraction
  • 相关文献

参考文献12

二级参考文献156

共引文献1004

同被引文献349

引证文献44

二级引证文献481

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部