期刊文献+

八通道MSVD构造及其在多聚焦图像融合中的应用 被引量:3

Construction of Eight Channel Multi-Resolution Singular Value Decomposition of Matrix and Its Application in Multi-Focus Image Fusion
下载PDF
导出
摘要 针对经典的SVD在图像处理中的不足,提出了一种八通道多尺度奇异值分解(Multi-resolution Singular Value Decomposition,MSVD)构造方法,并把它应用于多聚焦图像融合中.首先,在经典SVD的基础上,利用矩阵分块的方法,提出了一种八通道多尺度SVD的构造方法.其次,对参加融合的多聚焦图像进行八通道MSVD分解,得到高层低频和各层七个方向的高频,对分解的低频子图像利用数学形态学增强边缘的方法进行融合、高频子图像采用基于区域能量取大的融合规则进行融合,并重构获得融合结果图像.最后,对融合结果进行主客观评价和分析.实验结果表明,该图像融合方法有较好的视觉效果,结果图像有较高的清晰度,边缘细节信息丰富,没有方块效应.从客观数值和图形评价指标看,该方法有较高的清晰度,其清晰度比基于DWT的融合方法、基于LWT的融合方法、基于Curvelet的融合方法、基于Contourlet的融合方法都高. To improve the defaults of classical SVD in image processing,a construction method of eight channel multi-resolution singular value decomposition of matrix (MSVD)is presented.An image fusion method based on this MS-VD is proposed.Firstly,based on the principle of classical SVD and blocking algorithm,a multi-resolution analysis of eight-channel SVD of matrix is constructed.Each image involved in the fusion are decomposed into one approximation and seven detail images with different resolution by the eight channel multi-resolution singular value decomposition.Secondly,com-bined with reconstruction algorithm of MSVD,the frame of image fusion is given.The different frequency of original images can be shown in multi-resolution form.The low-frequency sub-image is fused by using an edge enhancement method of mathematical morphological gradient.For the seven high-frequency sub-images of each level,the energy of each image patch over 3 ×3 window in the high-frequency sub-images is computed as activity measurement.The center pixel of the 3 ×3 win-dow in which the energy is bigger is selected as the new pixel of the fused result images.Finally,the performance of the re-sult image is evaluated using objective numerical and graphics indices.The experimental results show that the proposed method has good visual effect and has no blocking-artifact.When compared with the fusion method based on DWT,LWT, Curvelet and Contourlet,the proposed fusion method has been observed to have higher definition.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第7期1694-1701,共8页 Acta Electronica Sinica
基金 国家自然科学基金面上项目(No.61471160) 湖北省自然科学基金重点项目(No.2012FFA053)
关键词 图像融合 矩阵奇异值分解 多尺度分析 多聚焦图像 image fusion singular value decomposition of matrix multi-resolution analysis multi-focus image
  • 相关文献

参考文献26

  • 1Bahador Khaleghi, Alaa Khamis, Fakhreddine O Karray, et al. Multisensor data fusion: A review of the state-of-the-art [J].Information Fusion,2013,14( 1 ) :28 -44. 被引量:1
  • 2A A Goshtasby, S Nikolov. Image fusion:Advances in the state of the art [ J ]. Information Fusion, 2007,8 ( 2 ) : 114 -118. 被引量:1
  • 3Burt P T, Adelson E H. The laplacian pyramid as a compact image code [ J ]. IEEE Transactions on Communications, 1983,31 (4) :532 -540. 被引量:1
  • 4Yun Se-Hwan, Kim Jin Heon, Kim Suki. Image enhance- ment using a fusion framework of histogram equalization and laplacian pyramid [ J ]. IEEE Transactions on Consumer Electronics, 2010,56 ( 4 ) : 2763 - 2771. 被引量:1
  • 5刘贵喜,杨万海.基于多尺度对比度塔的图像融合方法及性能评价[J].光学学报,2001,21(11):1336-1342. 被引量:76
  • 6A Toet. Multiscale contrast enhancement with application to image fusion [ J ]. Optical Engineering, 1992,31 (5) :1026 - 1031. 被引量:1
  • 7Li H,Manjunath B S,Mitra S K. Multi-sensor image fusion using the wavelet transform[ J]. CVGIP: Graphical Models and Image Processing, 1995,57 ( 3 ) :235 - 245. 被引量:1
  • 8Pajares G, Cruz J. A wavelet-based image fusion tutorial [J]. Pattern Recognition,2004,37 ( 9 ) : 1855 - 1872. 被引量:1
  • 9Jiang Yong, Wang Minghui. Image fusion with morphologi- cal component analysis [J ]. Information Fusion, 2014, 18 (7) :107 - 118. 被引量:1
  • 10Li Shutao, Yang Bing, Hu Jianwen. Performance compari- son of different multi-resolution transforms for image fu- sion [J ]. Information Fusion, 2011,12 ( 2 ) : 74 - 84. 被引量:1

二级参考文献63

共引文献427

同被引文献29

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部